2023屆黑龍江省克東一中、克山一中等五校聯考高考數學三模試卷含解析_第1頁
2023屆黑龍江省克東一中、克山一中等五校聯考高考數學三模試卷含解析_第2頁
2023屆黑龍江省克東一中、克山一中等五校聯考高考數學三模試卷含解析_第3頁
2023屆黑龍江省克東一中、克山一中等五校聯考高考數學三模試卷含解析_第4頁
2023屆黑龍江省克東一中、克山一中等五校聯考高考數學三模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的最大值為,最小正周期為,則有序數對為()A. B. C. D.2.在的展開式中,的系數為()A.-120 B.120 C.-15 D.153.某三棱錐的三視圖如圖所示,網格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.4.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.5.已知某幾何體的三視圖如圖所示,其中正視圖與側視圖是全等的直角三角形,則該幾何體的各個面中,最大面的面積為()A.2 B.5 C. D.6.已知函數,,若,對任意恒有,在區間上有且只有一個使,則的最大值為()A. B. C. D.7.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}8.學業水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業水平測試成績如圖所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人9.已知與之間的一組數據:12343.24.87.5若關于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.510.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內切 B.相交 C.外切 D.相離11.設是定義域為的偶函數,且在單調遞增,,則()A. B.C. D.12.已知函數為奇函數,且,則()A.2 B.5 C.1 D.3二、填空題:本題共4小題,每小題5分,共20分。13.若x,y滿足,則的最小值為________.14.若存在直線l與函數及的圖象都相切,則實數的最小值為___________.15.已知,若,則________.16.如圖,在長方體中,,E,F,G分別為的中點,點P在平面ABCD內,若直線平面EFG,則線段長度的最小值是________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設拋物線的焦點為,準線為,為拋物線過焦點的弦,已知以為直徑的圓與相切于點.(1)求的值及圓的方程;(2)設為上任意一點,過點作的切線,切點為,證明:.18.(12分)以平面直角坐標系的原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,已知曲線,曲線(為參數),求曲線交點的直角坐標.19.(12分)已知函數.(1)解不等式;(2)若函數存在零點,求的求值范圍.20.(12分)在直角坐標系中,曲線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸,建立極坐標系.已知點的直角坐標為,過的直線與曲線相交于,兩點.(1)若的斜率為2,求的極坐標方程和曲線的普通方程;(2)求的值.21.(12分)2019年春節期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設計了兩種抽獎方案.方案一:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.方案二:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.(1)現有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;(2)若某顧客獲得抽獎機會.①試分別計算他選擇兩種抽獎方案最終獲得返金券的數學期望;②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應選擇哪一種抽獎方案進行促銷活動?22.(10分)某市環保部門對該市市民進行了一次垃圾分類知識的網絡問卷調查,每一位市民僅有一次參加機會,通過隨機抽樣,得到參加問卷調查的人的得分(滿分:分)數據,統計結果如下表所示.組別頻數(1)已知此次問卷調查的得分服從正態分布,近似為這人得分的平均值(同一組中的數據用該組區間的中點值為代表),請利用正態分布的知識求;(2)在(1)的條件下,環保部門為此次參加問卷調查的市民制定如下獎勵方案.(ⅰ)得分不低于的可以獲贈次隨機話費,得分低于的可以獲贈次隨機話費;(ⅱ)每次贈送的隨機話費和相應的概率如下表.贈送的隨機話費/元概率現市民甲要參加此次問卷調查,記為該市民參加問卷調查獲贈的話費,求的分布列及數學期望.附:,若,則,,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】函數(為輔助角)∴函數的最大值為,最小正周期為故選B2、C【解析】

寫出展開式的通項公式,令,即,則可求系數.【詳解】的展開式的通項公式為,令,即時,系數為.故選C【點睛】本題考查二項式展開的通項公式,屬基礎題.3、C【解析】

作出三棱錐的實物圖,然后補成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實物圖如下圖所示:將其補成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點睛】本題考查三棱錐外接球的表面積,解題時要結合三視圖作出三棱錐的實物圖,并分析三棱錐的結構,選擇合適的模型進行計算,考查推理能力與計算能力,屬于中等題.4、D【解析】

構造函數,,利用導數分析出這兩個函數在區間上均為減函數,由得出,分、、三種情況討論,利用放縮法結合函數的單調性推導出或,再利用余弦函數的單調性可得出結論.【詳解】構造函數,,則,,所以,函數、在區間上均為減函數,當時,則,;當時,,.由得.①若,則,即,不合乎題意;②若,則,則,此時,,由于函數在區間上單調遞增,函數在區間上單調遞增,則,;③若,則,則,此時,由于函數在區間上單調遞減,函數在區間上單調遞增,則,.綜上所述,.故選:D.【點睛】本題考查函數單調性的應用,構造新函數是解本題的關鍵,解題時要注意對的取值范圍進行分類討論,考查推理能力,屬于中等題.5、D【解析】

根據三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個三棱錐,如圖所示,將其放在一個長方體中,并記為三棱錐.,,,故最大面的面積為.選D.【點睛】本題主要考查三視圖的識別,復雜的三視圖還原為幾何體時,一般借助長方體來實現.6、C【解析】

根據的零點和最值點列方程組,求得的表達式(用表示),根據在上有且只有一個最大值,求得的取值范圍,求得對應的取值范圍,由為整數對的取值進行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;②當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;③當時,,此時取可使成立,當時,,所以當時,成立;綜上所得的最大值為.故選:C【點睛】本小題主要考查三角函數的零點和最值,考查三角函數的性質,考查化歸與轉化的數學思想方法,考查分類討論的數學思想方法,屬于中檔題.7、B【解析】

按補集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點睛】本題考查集合間的運算,屬于基礎題.8、D【解析】

根據題意分別計算出物理等級為,化學等級為的學生人數以及物理等級為,化學等級為的學生人數,結合表格中的數據進行分析,可得出合適的選項.【詳解】根據題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變為:物理化學對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.9、D【解析】

利用表格中的數據,可求解得到代入回歸方程,可得,再結合表格數據,即得解.【詳解】利用表格中數據,可得又,.解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.10、B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r11、C【解析】

根據偶函數的性質,比較即可.【詳解】解:顯然,所以是定義域為的偶函數,且在單調遞增,所以故選:C【點睛】本題考查對數的運算及偶函數的性質,是基礎題.12、B【解析】

由函數為奇函數,則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數中的應用,考查學生分析問題的能力,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】

先作出可行域,再做直線,平移,找到使直線在y軸上截距最小的點,代入即得。【詳解】作出不等式組表示的平面區域,如圖,令,則,作出直線,平移直線,由圖可得,當直線經過C點時,直線在y軸上的截距最小,由,可得,因此的最小值為.故答案為:4【點睛】本題考查不含參數的線性規劃問題,是基礎題。14、【解析】

設直線l與函數及的圖象分別相切于,,因為,所以函數的圖象在點處的切線方程為,即,因為,所以函數的圖象在點處的切線方程為,即,因為存在直線l與函數及的圖象都相切,所以,所以,令,設,則,當時,,函數單調遞減;當時,,函數單調遞增,所以,所以實數的最小值為.15、1【解析】

由題意先求得的值,可得,再令,可得結論.【詳解】已知,,,,令,可得,故答案為:1.【點睛】本題主要考查二項式定理的應用,注意根據題意,分析所給代數式的特點,通過給二項式的賦值,求展開式的系數和,可以簡便的求出答案,屬于基礎題.16、【解析】

如圖,連接,證明平面平面EFG.因為直線平面EFG,所以點P在直線AC上.當時.線段的長度最小,再求此時的得解.【詳解】如圖,連接,因為E,F,G分別為AB,BC,的中點,所以,平面,則平面.因為,所以同理得平面,又.所以平面平面EFG.因為直線平面EFG,所以點P在直線AC上.在中,,故當時.線段的長度最小,最小值為.故答案為:【點睛】本題主要考查空間位置關系的證明,考查立體幾何中的軌跡問題,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)2,;(2)證明見解析.【解析】

(1)由題意得的方程為,根據為拋物線過焦點的弦,以為直徑的圓與相切于點..利用拋物線和圓的對稱性,可得,圓心為,半徑為2.(2)設,的方程為,代入的方程,得,根據直線與拋物線相切,令,得,代入,解得.將代入的方程,得,得到點N的坐標為,然后求解.【詳解】(1)解:由題意得的方程為,所以,解得.又由拋物線和圓的對稱性可知,所求圓的圓心為,半徑為2.所以圓的方程為.(2)證明:易知直線的斜率存在且不為0,設,的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點N的坐標為,所以,,故.【點睛】本題主要考查拋物線的定義幾何性質以及直線與拋物線的位置關系,還考查了數形結合的思想和運算求解的能力,屬于中檔題.18、【解析】

利用極坐標方程與普通方程、參數方程間的互化公式化簡即可.【詳解】因為,所以,所以曲線的直角坐標方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點坐標為.【點睛】本題考查極坐標方程與普通方程,參數方程與普通方程間的互化,考查學生的計算能力,是一道容易題.19、(1)或;(2).【解析】

(1)通過討論的范圍,將絕對值符號去掉,轉化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數零點問題轉化為曲線交點問題解決,數形結合得到結果.【詳解】(1)有題不等式可化為,當時,原不等式可化為,解得;當時,原不等式可化為,解得,不滿足,舍去;當時,原不等式可化為,解得,所以不等式的解集為.(2)因為,所以若函數存在零點則可轉化為函數與的圖像存在交點,函數在上單調增,在上單調遞減,且.數形結合可知.【點睛】該題考查的是有關不等式的問題,涉及到的知識點有分類討論求絕對值不等式的解集,將零點問題轉化為曲線交點的問題來解決,數形結合思想的應用,屬于簡單題目.20、(1):,:;(2)【解析】

(1)根據點斜式寫出直線的直角坐標方程,并轉化為極坐標方程,利用,將曲線的參數方程轉化為普通方程.(2)將直線的參數方程代入曲線的普通方程,結合直線參數的幾何意義以及根與系數關系,求得的值.【詳解】(1)的直角坐標方程為,即,則的極坐標方程為.曲線的普通方程為.(2)直線的參數方程為(為參數,為的傾斜角),代入曲線的普通方程,得.設,對應的參數分別為,,所以,在的兩側.則.【點睛】本小題主要考查直角坐標化為極坐標,考查參數方程化為普通方程,考查直線參數方程,考查直線參數的幾何意義,屬于中檔題.21、(1)(2)①②第一種抽獎方案.【解析】

(1)方案一中每一次摸到紅球的概率為,每名顧客有放回的抽3次獲180元返金劵的概率為,根據相互獨立事件的概率可知兩顧客都獲得180元返金劵的概率(2)①分別計算方案一,方案二顧客獲返金卷的期望,方案一列出分布列計算即可,方案二根據二項分布計算期望即可②根據①得出結論.【詳解】(1)選擇方案一,則每一次摸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論