2022-2023學年蘇州市吳中區市級名校中考三模數學試題含解析_第1頁
2022-2023學年蘇州市吳中區市級名校中考三模數學試題含解析_第2頁
2022-2023學年蘇州市吳中區市級名校中考三模數學試題含解析_第3頁
2022-2023學年蘇州市吳中區市級名校中考三模數學試題含解析_第4頁
2022-2023學年蘇州市吳中區市級名校中考三模數學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列函數中,二次函數是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=2.如圖,是一個工件的三視圖,則此工件的全面積是()A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm23.如圖,在正方形ABCD中,G為CD邊中點,連接AG并延長,分別交對角線BD于點F,交BC邊延長線于點E.若FG=2,則AE的長度為()A.6 B.8C.10 D.124.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點F,則的面積為()A.4 B.6 C.8 D.105.如圖,OP平分∠AOB,PC⊥OA于C,點D是OB上的動點,若PC=6cm,則PD的長可以是()A.7cm B.4cm C.5cm D.3cm6.如圖,函數y=kx+b(k≠0)與y=(m≠0)的圖象交于點A(2,3),B(-6,-1),則不等式kx+b>的解集為()A. B. C. D.7.下列運算中,正確的是()A.(a3)2=a5 B.(﹣x)2÷x=﹣xC.a3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x68.如圖,△ABC的面積為8cm2,AP垂直∠B的平分線BP于P,則△PBC的面積為(

)A.2cm2

B.3cm2

C.4cm2

D.5cm29.如圖,四邊形ABCD是菱形,對角線AC,BD交于點O,,,于點H,且DH與AC交于G,則OG長度為A. B. C. D.10.如圖,直線y=34x+3交x軸于A點,將一塊等腰直角三角形紙板的直角頂點置于原點O,另兩個頂點M、N恰落在直線y=3A.17 B.16 C.1二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:2a4﹣4a2+2=_____.12.已知直角三角形的兩邊長分別為3、1.則第三邊長為________.13.分解因式:ax2-a=______.14.將161000用科學記數法表示為1.61×10n,則n的值為________.15.如圖,⊙O的直徑CD垂直于AB,∠AOC=48°,則∠BDC=度.16.8的算術平方根是_____.三、解答題(共8題,共72分)17.(8分)如圖,反比例y=的圖象與一次函數y=kx﹣3的圖象在第一象限內交于A(4,a).(1)求一次函數的解析式;(2)若直線x=n(0<n<4)與反比例函數和一次函數的圖象分別交于點B,C,連接AB,若△ABC是等腰直角三角形,求n的值.18.(8分)在正方形網格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示.現將△ABC平移,使點A變換為點D,點E、F分別是B、C的對應點.請畫出平移后的△DEF.連接AD、CF,則這兩條線段之間的關系是________.19.(8分)俄羅斯世界杯足球賽期間,某商店銷售一批足球紀念冊,每本進價40元,規定銷售單價不低于44元,且獲利不高于30%.試銷售期間發現,當銷售單價定為44元時,每天可售出300本,銷售單價每上漲1元,每天銷售量減少10本,現商店決定提價銷售.設每天銷售量為y本,銷售單價為x元.請直接寫出y與x之間的函數關系式和自變量x的取值范圍;當每本足球紀念冊銷售單價是多少元時,商店每天獲利2400元?將足球紀念冊銷售單價定為多少元時,商店每天銷售紀念冊獲得的利潤w元最大?最大利潤是多少元?20.(8分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉90°得線段PQ.(1)當點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;(2)當AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大小;(3)在點P運動中,當以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結果.21.(8分)某中學為開拓學生視野,開展“課外讀書周”活動,活動后期隨機調查了九年級部分學生一周的課外閱讀時間,并將結果繪制成兩幅不完整的統計圖,請你根據統計圖的信息回答下列問題:(1)本次調查的學生總數為_____人,被調查學生的課外閱讀時間的中位數是_____小時,眾數是_____小時;并補全條形統計圖;(2)在扇形統計圖中,課外閱讀時間為5小時的扇形的圓心角度數是_____;(3)若全校九年級共有學生800人,估計九年級一周課外閱讀時間為6小時的學生有多少人?22.(10分)(1)如圖1,正方形ABCD中,點E,F分別在邊CD,AD上,AE⊥BF于點G,求證:AE=BF;(2)如圖2,矩形ABCD中,AB=2,BC=3,點E,F分別在邊CD,AD上,AE⊥BF于點M,探究AE與BF的數量關系,并證明你的結論;(3)在(2)的基礎上,若AB=m,BC=n,其他條件不變,請直接寫出AE與BF的數量關系;.23.(12分)如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,交AC于點C,使∠BED=∠C.(1)判斷直線AC與圓O的位置關系,并證明你的結論;(2)若AC=8,cos∠BED=4524.為營造濃厚的創建全國文明城市氛圍,東營市某中學委托制衣廠制作“最美東營人”和“最美志愿者”兩款文化衫.若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需145元.(1)求“最美東營人”和“最美志愿者”兩款文化衫每件各多少元?(2)若該中學要購進“最美東營人”和“最美志愿者”兩款文化衫共90件,總費用少于1595元,并且“最美東營人”文化衫的數量少于“最美志愿者”文化衫的數量,那么該中學有哪幾種購買方案?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】A.y=-4x+5是一次函數,故此選項錯誤;B.

y=x(2x-3)=2x2-3x,是二次函數,故此選項正確;C.

y=(x+4)2?x2=8x+16,為一次函數,故此選項錯誤;D.

y=是組合函數,故此選項錯誤.故選B.2、C【解析】

先根據三視圖得到圓錐的底面圓的直徑為12cm,高為8cm,再計算母線長為10,根據圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形半徑等于圓錐的母線長計算圓錐的側面積和底面積的和即可.【詳解】圓錐的底面圓的直徑為12cm,高為8cm,所以圓錐的母線長==10,所以此工件的全面積=π62+2π610=96π(cm2).故答案選C.【點睛】本題考查的知識點是圓錐的面積及由三視圖判斷幾何體,解題的關鍵是熟練的掌握圓錐的面積及由三視圖判斷幾何體.3、D【解析】

根據正方形的性質可得出AB∥CD,進而可得出△ABF∽△GDF,根據相似三角形的性質可得出=2,結合FG=2可求出AF、AG的長度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【詳解】解:∵四邊形ABCD為正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故選:D.【點睛】本題考查了相似三角形的判定與性質、正方形的性質,利用相似三角形的性質求出AF的長度是解題的關鍵.4、C【解析】

根據折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質知,第二個圖中BD=AB-AD=4,第三個圖中AB=AD-BD=2,

因為BC∥DE,

所以BF:DE=AB:AD,

所以BF=2,CF=BC-BF=4,

所以△CEF的面積=CF?CE=8;

故選:C.點睛:

本題利用了:①折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質,平行線的性質,三角形的面積公式等知識點.5、A【解析】

過點P作PD⊥OB于D,根據角平分線上的點到角的兩邊距離相等可得PC=PD,再根據垂線段最短解答即可.【詳解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,則PD的最小值是6cm,故選A.【點睛】考查了角平分線上的點到角的兩邊距離相等的性質,垂線段最短的性質,熟記性質是解題的關鍵.6、B【解析】

根據函數的圖象和交點坐標即可求得結果.【詳解】解:不等式kx+b>的解集為:-6<x<0或x>2,

故選B.【點睛】此題考查反比例函數與一次函數的交點問題,解題關鍵是注意掌握數形結合思想的應用.7、D【解析】

根據同底數冪的除法、乘法的運算方法,冪的乘方與積的乘方的運算方法,以及單項式乘單項式的方法,逐項判定即可.【詳解】∵(a3)2=a6,∴選項A不符合題意;∵(-x)2÷x=x,∴選項B不符合題意;∵a3(-a)2=a5,∴選項C不符合題意;∵(-2x2)3=-8x6,∴選項D符合題意.故選D.【點睛】此題主要考查了同底數冪的除法、乘法的運算方法,冪的乘方與積的乘方的運算方法,以及單項式乘單項式的方法,要熟練掌握.8、C【解析】

延長AP交BC于E,根據AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可求得△PBC的面積.【詳解】延長AP交BC于E.∵AP垂直∠B的平分線BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵∠APB=∠EPBBP=BP∠ABP=∠EBP,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=12S△ABC故選C.【點睛】本題考查了三角形面積和全等三角形的性質和判定的應用,關鍵是求出S△PBC=S△PBE+S△PCE=12S△9、B【解析】試題解析:在菱形中,,,所以,,在中,,因為,所以,則,在中,由勾股定理得,,由可得,,即,所以.故選B.10、A【解析】

過O作OC⊥AB于C,過N作ND⊥OA于D,設N的坐標是(x,34x+3),得出DN=34x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面積公式得出AO×OB=AB×OC,代入求出OC,根據sin45°=OCON,求出ON,在Rt△NDO中,由勾股定理得出(34x+3)2+(-x)2=(122【詳解】過O作OC⊥AB于C,過N作ND⊥OA于D,∵N在直線y=34∴設N的坐標是(x,34則DN=34y=34當x=0時,y=3,當y=0時,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面積公式得:AO×OB=AB×OC,∴3×4=5OC,OC=125∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=OCON∴ON=122在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(34x+3)2+(-x)2=(1225解得:x1=-8425,x2=12∵N在第二象限,∴x只能是-842534x+3=12即ND=1225,OD=84tan∠AON=NDOD故選A.【點睛】本題考查了一次函數圖象上點的坐標特征,勾股定理,三角形的面積,解直角三角形等知識點的運用,主要考查學生運用這些性質進行計算的能力,題目比較典型,綜合性比較強.二、填空題(本大題共6個小題,每小題3分,共18分)11、1(a+1)1(a﹣1)1.【解析】

原式提取公因式,再利用完全平方公式分解即可.【詳解】解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,故答案為:1(a+1)1(a﹣1)1【點睛】本題主要考查提取公因式與公式法的綜合運用,關鍵要掌握提取公因式之后,根據多項式的項數來選擇方法繼續因式分解,如果多項式是兩項,則考慮用平方差公式;如果是三項,則考慮用完全平方公式.12、4或【解析】試題分析:已知直角三角形兩邊的長,但沒有明確是直角邊還是斜邊,因此分兩種情況討論:①長為3的邊是直角邊,長為3的邊是斜邊時:第三邊的長為:;②長為3、3的邊都是直角邊時:第三邊的長為:;∴第三邊的長為:或4.考點:3.勾股定理;4.分類思想的應用.13、【解析】

先提公因式,再套用平方差公式.【詳解】ax2-a=a(x2-1)=故答案為:【點睛】掌握因式分解的一般方法:提公因式法,公式法.14、5【解析】

【科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】∵161000=1.61×105.∴n=5.故答案為5.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.15、20【解析】解:連接OB,∵⊙O的直徑CD垂直于AB,∴=,∴∠BOC=∠AOC=40°,∴∠BDC=∠AOC=×40°=20°16、2.【解析】試題分析:本題主要考查的是算術平方根的定義,掌握算術平方根的定義是解題的關鍵.依據算術平方根的定義回答即可.由算術平方根的定義可知:8的算術平方根是,∵=2,∴8的算術平方根是2.故答案為2.考點:算術平方根.三、解答題(共8題,共72分)17、(1)y=x﹣3(2)1【解析】

(1)由已知先求出a,得出點A的坐標,再把A的坐標代入一次函數y=kx-3求出k的值即可求出一次函數的解析式;(2)易求點B、C的坐標分別為(n,),(n,n-3).設直線y=x-3與x軸、y軸分別交于點D、E,易得OD=OE=3,那么∠OED=45°.根據平行線的性質得到∠BCA=∠OED=45°,所以當△ABC是等腰直角三角形時只有AB=AC一種情況.過點A作AF⊥BC于F,根據等腰三角形三線合一的性質得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.【詳解】解:(1)∵反比例y=的圖象過點A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函數y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函數的解析式為y=x﹣3;(2)由題意可知,點B、C的坐標分別為(n,),(n,n﹣3).設直線y=x﹣3與x軸、y軸分別交于點D、E,如圖,當x=0時,y=﹣3;當y=0時,x=3,∴OD=OE,∴∠OED=45°.∵直線x=n平行于y軸,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一種情況,過點A作AF⊥BC于F,則BF=FC,F(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【點睛】本題考查了反比例函數與一次函數的交點問題,待定系數法求一次函數的解析式,等腰直角三角形的性質,難度適中.18、見解析【解析】(1)如圖:(2)連接AD、CF,則這兩條線段之間的關系是AD=CF,且AD∥CF.19、(1)y=﹣10x+740(44≤x≤52);(2)當每本足球紀念冊銷售單價是50元時,商店每天獲利2400元;(3)將足球紀念冊銷售單價定為52元時,商店每天銷售紀念冊獲得的利潤w元最大,最大利潤是2640元.【解析】

(1)售單價每上漲1元,每天銷售量減少10本,則售單價每上漲(x﹣44)元,每天銷售量減少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用銷售單價不低于44元,且獲利不高于30%確定x的范圍;(2)利用每本的利潤乘以銷售量得到總利潤得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范圍確定銷售單價;(3)利用每本的利潤乘以銷售量得到總利潤得到w=(x﹣40)(﹣10x+740),再把它變形為頂點式,然后利用二次函數的性質得到x=52時w最大,從而計算出x=52時對應的w的值即可.【詳解】(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根據題意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:當每本足球紀念冊銷售單價是50元時,商店每天獲利2400元;(3)w=(x﹣40)(﹣10x+740)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,當x<57時,w隨x的增大而增大,而44≤x≤52,所以當x=52時,w有最大值,最大值為﹣10(52﹣57)2+2890=2640,答:將足球紀念冊銷售單價定為52元時,商店每天銷售紀念冊獲得的利潤w元最大,最大利潤是2640元.【點睛】本題考查了二次函數的應用,一元二次方程的應用,解決二次函數應用類問題時關鍵是通過題意,確定出二次函數的解析式,然后利用二次函數的性質確定其最大值;在求二次函數的最值時,一定要注意自變量x的取值范圍.20、(1)45,,π;(2)滿足條件的∠QQ0D為45°或135°;(3)BP的長為或;(4)≤CQ≤7.【解析】

(1)由已知,可知△APQ為等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的長度;(2)分點Q在BD上方和下方的情況討論求解即可.(3)分別討論點Q在BD上方和下方的情況,利用切線性質,在由(2)用BP0表示BP,由射影定理計算即可;(4)由(2)可知,點Q在過點Qo,且與BD夾角為45°的線段EF上運動,有圖形可知,當點Q運動到點E時,CQ最長為7,再由垂線段最短,應用面積法求CQ最小值.【詳解】解:(1)如圖,過點P做PE⊥AD于點E由已知,AP=PQ,∠APQ=90°∴△APQ為等腰直角三角形∴∠PAQ=∠PAB=45°設PE=x,則AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的長為?2π?=π.故答案為45,,π.(2)如圖,過點Q做QF⊥BD于點F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.當點Q在BD的右下方時,同理可得∠PQ0Q=45°,此時∠QQ0D=135°,綜上所述,滿足條件的∠QQ0D為45°或135°.(3)如圖當點Q直線BD上方,當以點Q為圓心,BP為半徑的圓與直線BD相切時過點Q做QF⊥BD于點F,則QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0?BD∴9=BP×5∴BP=同理,當點Q位于BD下方時,可求得BP=故BP的長為或(4)由(2)可知∠QQ0D=45°則如圖,點Q在過點Q0,且與BD夾角為45°的線段EF上運動,當點P與點B重合時,點Q與點F重合,此時,CF=4﹣3=1當點P與點D重合時,點Q與點E重合,此時,CE=4+3=7∴EF===5過點C做CH⊥EF于點H由面積法可知CH===∴CQ的取值范圍為:≤CQ≤7【點睛】本題是幾何綜合題,考查了三角形全等、勾股定理、切線性質以及三角形相似的相關知識,應用了分類討論和數形結合的數學思想.21、(1)50;4;5;畫圖見解析;(2)144°;(3)64【解析】

(1)根據統計圖可知,課外閱讀達3小時的共10人,占總人數的20%,由此可得出總人數;求出課外閱讀時間4小時與6小時男生的人數,再根據中位數與眾數的定義即可得出結論;根據求出的人數補全條形統計圖即可;

(2)求出課外閱讀時間為5小時的人數,再求出其人數與總人數的比值即可得出扇形的圓心角度數;

(3)求出總人數與課外閱讀時間為6小時的學生人數的百分比的積即可.【詳解】解:(1)∵課外閱讀達3小時的共10人,占總人數的20%,∴=50(人).∵課外閱讀4小時的人數是32%,∴50×32%=16(人),∴男生人數=16﹣8=8(人);∴課外閱讀6小時的人數=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴課外閱讀3小時的是10人,4小時的是16人,5小時的是20人,6小時的是4人,∴中位數是4小時,眾數是5小時.補全圖形如圖所示.故答案為50,4,5;(2)∵課外閱讀5小時的人數是20人,∴×360°=144°.故答案為144°;(3)∵課外閱讀6小時的人數是4人,∴800×=64(人).答:九年級一周課外閱讀時間為6小時的學生大約有64人.【點睛】本題考查了統計圖與中位數、眾數的知識點,解題的關鍵是熟練的掌握中位數與眾數的定義與根據題意作圖.22、(1)證明見解析;(2)AE=23BF,(3)AE=m【解析】

(1)根據正方形的性質,可得∠ABC與∠C的關系,AB與BC的關系,根據兩直線垂直,可得∠AMB的度數,根據直角三角形銳角的關系,可得∠ABM與∠BAM的關系,根據同角的余角相等,可得∠BAM與∠CBF的關系,根據ASA,可得△ABE≌△BCF,根據全等三角形的性質,可得答案;(2)根據矩形的性質得到∠ABC=∠C,由余角的性質得到∠BAM=∠CBF,根據相似三角形的性質即可得到結論;(3)結論:AE=mn【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,∠BAE=∠CBFAB=CB∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如圖2中,結論:AE=23理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=23(3)結論:AE=mn理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=mn【點睛】本題考查了四邊形綜合題、相似三角形的判定和性質,全等三角形的判定和性質,正方形的性質,矩形的性質,熟練掌握全等三角形或相似三角形的判定和性質是解題的關鍵.23、(1)AC與⊙O相切,證明參見解析;(2).【解析】試題分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論