




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,則(
)A.10 B.11 C.12 D.132.設函數在定義城內可導,的圖象如圖所示,則導函數的圖象可能為()A. B.C. D.3.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.4.已知等差數列的公差不為零,且,,構成新的等差數列,為的前項和,若存在使得,則()A.10 B.11 C.12 D.135.從某市的中學生中隨機調查了部分男生,獲得了他們的身高數據,整理得到如下頻率分布直方圖:根據頻率分布直方圖,可知這部分男生的身高的中位數的估計值為A. B.C. D.6.已知雙曲線的右焦點為為坐標原點,以為直徑的圓與雙曲線的一條漸近線交于點及點,則雙曲線的方程為()A. B. C. D.7.設一個正三棱柱,每條棱長都相等,一只螞蟻從上底面的某頂點出發,每次只沿著棱爬行并爬到另一個頂點,算一次爬行,若它選擇三個方向爬行的概率相等,若螞蟻爬行10次,仍然在上底面的概率為,則為()A. B.C. D.8.一個超級斐波那契數列是一列具有以下性質的正整數:從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數列的個數為()A.3 B.4 C.5 D.69.已知拋物線的焦點為,過焦點的直線與拋物線分別交于、兩點,與軸的正半軸交于點,與準線交于點,且,則()A. B.2 C. D.310.設集合,,若集合中有且僅有2個元素,則實數的取值范圍為A. B.C. D.11.設a,b都是不等于1的正數,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件12.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中項的系數為_______.14.甲、乙兩人下棋,兩人下成和棋的概率是,乙獲勝的概率是,則乙不輸的概率是_____.15.函數的圖像如圖所示,則該函數的最小正周期為________.16.已知為橢圓的左、右焦點,點在橢圓上移動時,的內心的軌跡方程為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.18.(12分)已知函數.(1)解不等式;(2)若函數存在零點,求的求值范圍.19.(12分)設函數,,其中,為正實數.(1)若的圖象總在函數的圖象的下方,求實數的取值范圍;(2)設,證明:對任意,都有.20.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,平面平面,點為棱的中點.(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;(Ⅱ)當二面角的余弦值為時,求直線與平面所成的角.21.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.22.(10分)已知函數(1)若函數有且只有一個零點,求實數的取值范圍;(2)若函數對恒成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據題中給出的分段函數,只要將問題轉化為求x≥10內的函數值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點睛】本題主要考查了分段函數中求函數的值,屬于基礎題.2、D【解析】
根據的圖象可得的單調性,從而得到在相應范圍上的符號和極值點,據此可判斷的圖象.【詳解】由的圖象可知,在上為增函數,且在上存在正數,使得在上為增函數,在為減函數,故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數可得在上恒成立,故排除C.故選:D.【點睛】本題考查導函數圖象的識別,此類問題應根據原函數的單調性來考慮導函數的符號與零點情況,本題屬于基礎題.3、C【解析】
設,,,,設直線的方程為:,與拋物線方程聯立,由△得,利用韋達定理結合已知條件得,,代入上式即可求出的取值范圍.【詳解】設直線的方程為:,,,,,聯立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【點睛】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題.4、D【解析】
利用等差數列的通項公式可得,再利用等差數列的前項和公式即可求解.【詳解】由,,構成等差數列可得即又解得:又所以時,.故選:D【點睛】本題考查了等差數列的通項公式、等差數列的前項和公式,需熟記公式,屬于基礎題.5、C【解析】
由題可得,解得,則,,所以這部分男生的身高的中位數的估計值為,故選C.6、C【解析】
根據雙曲線方程求出漸近線方程:,再將點代入可得,連接,根據圓的性質可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點睛】本題考查了雙曲線的幾何性質,需掌握雙曲線的漸近線求法,屬于中檔題.7、D【解析】
由題意,設第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,可得,根據求數列的通項知識可得選項.【詳解】由題意,設第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,∴,即,∴,∴數列是以為公比的等比數列,而,所以,∴當時,,故選:D.【點睛】本題考查幾何體中的概率問題,關鍵在于運用遞推的知識,得出相鄰的項的關系,這是常用的方法,屬于難度題.8、A【解析】
根據定義,表示出數列的通項并等于2020.結合的正整數性質即可確定解的個數.【詳解】由題意可知首項為2,設第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當的值可以為;即有3個這種超級斐波那契數列,故選:A.【點睛】本題考查了數列新定義的應用,注意自變量的取值范圍,對題意理解要準確,屬于中檔題.9、B【解析】
過點作準線的垂線,垂足為,與軸交于點,由和拋物線的定義可求得,利用拋物線的性質可構造方程求得,進而求得結果.【詳解】過點作準線的垂線,垂足為,與軸交于點,由拋物線解析式知:,準線方程為.,,,,由拋物線定義知:,,,.由拋物線性質得:,解得:,.故選:.【點睛】本題考查拋物線定義與幾何性質的應用,關鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.10、B【解析】
由題意知且,結合數軸即可求得的取值范圍.【詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【點睛】本題主要考查了集合的關系及運算,以及借助數軸解決有關問題,其中確定中的元素是解題的關鍵,屬于基礎題.11、C【解析】
根據對數函數以及指數函數的性質求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數,對數不等式的解法,是基礎題.12、A【解析】
利用逐一驗證的方法進行求解.【詳解】若甲預測正確,則乙、丙預測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預測正確,則丙預測也正確,不符合題意;若丙預測正確,則甲必預測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預測正確,不符合題意,故選A.【點睛】本題將數學知識與時政結合,主要考查推理判斷能力.題目有一定難度,注重了基礎知識、邏輯推理能力的考查.二、填空題:本題共4小題,每小題5分,共20分。13、40【解析】
根據二項定理展開式,求得r的值,進而求得系數.【詳解】根據二項定理展開式的通項式得所以,解得所以系數【點睛】本題考查了二項式定理的簡單應用,屬于基礎題.14、【解析】乙不輸的概率為,填.15、【解析】
根據圖象利用,先求出的值,結合求出,然后利用周期公式進行求解即可.【詳解】解:由,得,,,則,,,即,則函數的最小正周期,故答案為:8【點睛】本題主要考查三角函數周期的求解,結合圖象求出函數的解析式是解決本題的關鍵.16、【解析】
考查更為一般的問題:設P為橢圓C:上的動點,為橢圓的兩個焦點,為△PF1F2的內心,求點I的軌跡方程.解法一:如圖,設內切圓I與F1F2的切點為H,半徑為r,且F1H=y,F2H=z,PF1=x+y,PF2=x+z,,則.直線IF1與IF2的斜率之積:,而根據海倫公式,有△PF1F2的面積為因此有.再根據橢圓的斜率積定義,可得I點的軌跡是以F1F2為長軸,離心率e滿足的橢圓,其標準方程為.解法二:令,則.三角形PF1F2的面積:,其中r為內切圓的半徑,解得.另一方面,由內切圓的性質及焦半徑公式得:從而有.消去θ得到點I的軌跡方程為:.本題中:,代入上式可得軌跡方程為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】
(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計算.18、(1)或;(2).【解析】
(1)通過討論的范圍,將絕對值符號去掉,轉化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數零點問題轉化為曲線交點問題解決,數形結合得到結果.【詳解】(1)有題不等式可化為,當時,原不等式可化為,解得;當時,原不等式可化為,解得,不滿足,舍去;當時,原不等式可化為,解得,所以不等式的解集為.(2)因為,所以若函數存在零點則可轉化為函數與的圖像存在交點,函數在上單調增,在上單調遞減,且.數形結合可知.【點睛】該題考查的是有關不等式的問題,涉及到的知識點有分類討論求絕對值不等式的解集,將零點問題轉化為曲線交點的問題來解決,數形結合思想的應用,屬于簡單題目.19、(1)(2)證明見解析【解析】
(1)據題意可得在區間上恒成立,利用導數討論函數的單調性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當時,,利用導數判斷函數的單調性從而證明在區間上成立,從而證明對任意,都有.【詳解】(1)解:因為函數的圖象恒在的圖象的下方,所以在區間上恒成立.設,其中,所以,其中,.①當,即時,,所以函數在上單調遞增,,故成立,滿足題意.②當,即時,設,則圖象的對稱軸,,,所以在上存在唯一實根,設為,則,,,所以在上單調遞減,此時,不合題意.綜上可得,實數的取值范圍是.(2)證明:由題意得,因為當時,,,所以.令,則,所以在上單調遞增,,即,所以,從而.由(1)知當時,在上恒成立,整理得.令,則要證,只需證.因為,所以在上單調遞增,所以,即在上恒成立.綜上可得,對任意,都有成立.【點睛】本題考查導數在研究函數中的作用,利用導數判斷函數單調性與求函數最值,利用導數證明不等式,屬于難題.20、(1)見解析(2)【解析】
(Ⅰ)取的中點,連結、,得到故且,進而得到,利用線面平行的判定定理,即可證得平面.(Ⅱ)以為坐標原點建立如圖空間直角坐標系,設,求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進而得到為直線與平面所成的角,即可求解.【詳解】(Ⅰ)在棱上存在點,使得平面,點為棱的中點.理由如下:取的中點,連結、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,,又平面,平面,所以,平面.(Ⅱ)由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標原點建立如圖空間直角坐標系,設,則由題意知,,,,,,設平面的法向量為,則由得,令,則,,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內的射影為,所以為直線與平面所成的角,易知在中,,從而,所以直線與平面所成的角為.【點睛】本題考查了立體幾何中的面面垂直的判定和直線與平面所成角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,通過嚴密推理,明確角的構成,著重考查了分析問題和解答問題的能力.21、(I)證明見解析;(II)1【解析】
(I)過D作DE⊥BC于E,連接SE,根據勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新疆機電職業技術學院《創業管理》2023-2024學年第二學期期末試卷
- 蘭州職業技術學院《道路景觀設計》2023-2024學年第一學期期末試卷
- 昆明冶金高等專科學校《裝飾圖案基礎》2023-2024學年第二學期期末試卷
- 日照航海工程職業學院《首飾設計與制作》2023-2024學年第二學期期末試卷
- 西藏民族大學《醫學免疫學研究進展》2023-2024學年第二學期期末試卷
- 吉林電子信息職業技術學院《軟件設計開發綜合實訓》2023-2024學年第二學期期末試卷
- 銅仁職業技術學院《生物質廢棄物資源化利用》2023-2024學年第二學期期末試卷
- 上海杉達學院《細胞及分子生物學實驗》2023-2024學年第二學期期末試卷
- 江海職業技術學院《天然藥物化學》2023-2024學年第一學期期末試卷
- 延安職業技術學院《高頻電子電路》2023-2024學年第二學期期末試卷
- 北師大版2024-2025學年度第二學期一年級數學期中檢測(含答案)
- 2025年中國短圓柱滾子軸承市場調查研究報告
- 教師的情緒管理課件
- 湖北省十一校2024-2025學年高三第二次聯考數學試卷(解析版)
- 英語-華大新高考聯盟2025屆高三3月教學質量測評試題+答案
- 第10課 養成遵紀守法好習慣
- 《手工制作》課件-幼兒園掛飾
- 【初中地理】西亞+課件-2024-2025學年人教版地理七年級下冊
- 2025修訂版《保障中小企業款項支付條例》解讀學習課件
- 鼓勵員工發現安全隱患的獎勵制度
- 蘇教版一年級下冊數學全冊教學設計(配2025年春新版教材)
評論
0/150
提交評論