




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省駐馬店市諸鄉聯合中學2021-2022學年高一數學理期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.扇形的周長是4,面積為1,則該扇形的圓心角的弧度數是(
)A.
B.C.D.參考答案:C2.在平面直角坐標系xOy中,已知點A,B分別為x軸,y軸上一點,且,若點,則的取值范圍是(
)A.[5,6]
B.[6,7]
C.[6,9]
D.[5,7]參考答案:D設,則,所以,所以,所以,令,則,當時,的取得最大值;當時,的取得最小大值,故選D.
3.若,則的值為(
)A.0
B.1
C.
D.1或參考答案:C略4.若函數,則f(f(1))的值為()A.﹣1 B.0 C.1 D.2參考答案:B【考點】函數的值.【專題】函數思想;綜合法;函數的性質及應用.【分析】求出f(1)的值,從而求出f(f(1))=f(0)的值即可.【解答】解:f(1)==0,∴f(f(1))=f(0)=﹣30+1=0,故選:B.【點評】本題考查了求函數值問題,考查分段函數問題,是一道基礎題.5.函數的定義域為().A.(-∞,2] B.(-∞,2) C.(0,2] D.(0,2)參考答案:解:要使函數有意義,則需滿足,解得:,∴函數的定義域是.故選:.6.已知某個幾何體的三視圖如圖,根據圖中標出的尺寸(單位)可得這個幾何體的體積是(
)A.
B.
C.3
D.4參考答案:B略7.若直線y=x+m與曲線有兩個不同的交點,則實數m的取值范圍為()A.(,) B. (1,)C.(-1,]D.[1,)參考答案:D【考點】直線與圓相交的性質.【分析】表示的曲線為圓心在原點,半徑是1的圓在x軸以及x軸上方的部分,把斜率是1的直線平行移動,即可求得結論.【解答】解:表示的曲線為圓心在原點,半徑是1的圓在x軸以及x軸上方的部分.作出曲線的圖象,在同一坐標系中,再作出斜率是1的直線,由左向右移動,可發現,直線先與圓相切,再與圓有兩個交點,直線與曲線相切時的m值為,直線與曲線有兩個交點時的m值為1,則1.故選D.8.冪函數,,的圖象如下圖所示,則實數,,的大小關系為()A.
B.C.
D.
參考答案:A略9.已知O是內部一點,且,,,則的面積為A.
B.
C.
D.參考答案:D10.已知是定義在R上的偶函數,且,若,則方程在區間(0,6)內解的個數的最小值是(
)A.5
B.4
C.3
D.2參考答案:B∵f(x)是定義在R上的偶函數,且f(3﹣x)=f(x),f(x﹣3)=f(x),∴f(x)是以3為周期的周期函數,又∵f(x)是定義在R上的偶函數,f(2)=0,∴f(﹣2)=0,∴f(5)=f(2)=0,f(1)=f(﹣2)=0,f(4)=f(1)=0.即在區間(0,6)內,f(2)=0,f(5)=0,f(1)=0,f(4)=0,方程f(x)=0在區間(0,6)內解的個數的最小值是:4.
二、填空題:本大題共7小題,每小題4分,共28分11.已知f(x)=4x2﹣mx+1在(﹣∞,﹣2]上遞減,在[﹣2,+∞)上遞增,則f(1)=.參考答案:21【考點】函數單調性的性質.
【專題】計算題.【分析】根據函數的單調性可知二次函數的對稱軸,結合二次函數的對稱性建立等量關系,求得m的值,把1代入函數解析式即可求得結果.【解答】解:∵二次函數f(x)=4x2﹣mx+1在(﹣∞,﹣2]上遞減,在[﹣2,+∞)上遞增,∴二次函數f(x)=4x2﹣mx+1的對稱軸為x=﹣2=解得m=﹣16,∴f(x)=4x2+16x+1,因此f(1)=21故答案為21.【點評】本題主要考查了二次函數的單調性的應用,以及二次函數的有關性質,根據題意得到二次函數的對稱軸是解題的關鍵,屬于基礎題.12.已知數列的前項和為,,,則__________.參考答案:【分析】先利用時,求出的值,再令,由得出,兩式相減可求出數列的通項公式,再將的表達式代入,可得出.【詳解】當時,則有,;當時,由得出,上述兩式相減得,,得且,所以,數列是以為首項,以為公比的等比數列,則,,那么,因此,,故答案為:.【點睛】本題考查等比數列前項和與通項之間的關系,同時也考查了等比數列求和,一般在涉及與的遞推關系求通項時,常用作差法來求解,考查計算能力,屬于中等題.13.在ABC中,M是BC的中點,AM=3,BC=10,則=______________參考答案:-16
略14.已知函數,若實數滿足,且,則的取值范圍是
.參考答案:由圖像可知,且,于是,則,所以,所以的取值范圍是.15.若關于x的方程有三個不相等的實數根,則實數的值為___▲____.參考答案:3令,則由題意可得函數與函數的圖象有三個公共點。畫出函數的圖象如圖所示,結合圖象可得,要使兩函數的圖象有三個公共點,則。答案:3
16.不等式的解集為
.參考答案:17.一個空間幾何體的三視圖如圖所示,則該幾何體的表面積為__________。參考答案:略三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.已知函數.求:(1)函數的最值及相應的x的值;(2)函數的最小正周期.參考答案:(1)見解析(2)試題分析:(1)由,可推得,即可求解函數的最值及其相應的的值.(2)利用三角函數的周期公式,即可求解函數的最小正周期.試題解析:(1)因為,所以,所以,所以,此時,即;所以,此時,即.(2)函數的最小正周期.19.(10分)某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區間是:[50,60),[60,70),[70,80),[80,90),[90,100]
(1)求圖中a的值; (2)根據頻率分布直方圖,估計這100名學生語文成績的平均分.及中位數。(3)若這100名學生語文成績某些分數段的人數(x)與數學成績相應分數段的人數(y)之比如下表所示,求數學成績在[50,90)之外的人數.(4)若采用分層抽樣的方法,從這100名同學中抽取5名同學參加“漢字英雄聽寫大會”其中甲同學95分,則甲同學被抽到的機會多大?參考答案:(1)由頻率分布直方圖知(0.04+0.03+0.02+2a)×10=1,∴a=0.005.(2分)(2)55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.ks5u所以平均分為73分.中位數71.7(4分)(3)分別求出語文成績分數段在[50,60),[60,70),[70,80),[80,90)的人數依次為0.05×100=5,0.4×100=40,0.3×100=30,0.2×100=20.所以數學成績分數段在[50,60),[60,70),[70,80),[80,90)的人數依次為:5,20,40,25.所以數學成績在[50,90)之外的人數有100-(5+20+40+25)=10(人).(3分)(4)由分層抽樣知每個個體被抽到的機會相等,都為0.05.(1分)20.(本題滿分12分)某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元,已知總收益滿足函數:R(x)=,其中x是儀器的月產量.(1)將利潤表示為月產量的函數f(x);(2)當月產量為何值時,公司所獲利潤最大?最大利潤為多少元?(總收益=總成本+利潤)參考答案:(1)設每月產量為x臺,則總成本為20000+100x,………2分從而f(x)=………………6分
(不寫定義域扣1分)(2)當0≤x≤400時,f(x)=-(x-300)2+25000,∴當x=300時,有最大值25000;
…………9分當x>400時,f(x)=60000-100x是減函數,f(x)<60000-100×400<25000.∴當x=300時,f(x)的最大值為25000.
……………11分∴每月生產300臺儀器時,利潤最大,最大利潤為25000元.………12分21.(本題16分)已知函數是偶函數.(1)求的值;(2)若,求的取值范圍;(3)設函數,其中若函數與的圖象有且只有一個交點,求的取值范圍.參考答案:(1)∵是偶函數,∴對任意,恒成立
恒成立,∴
(2)或
(3)由于,所以定義域為,也就是滿足
∵函數與的圖象有且只有一個交點,∴方程在上只有一解即:方程在上只有一解
,令則,因而等價于關于的方程(*)在上只有一解
1
當時,解得,不合題意;
當時,記,其圖象的對稱軸∴函數在上遞減,而∴方程(*)在無解
2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高墩柱專項施工方案
- 宜賓職業技術學院《口腔局部解剖學》2023-2024學年第二學期期末試卷
- 沈陽化工大學《禮儀文化與有效溝通》2023-2024學年第二學期期末試卷
- 重慶三峽學院《基因工程及分子生物學》2023-2024學年第二學期期末試卷
- 三峽電力職業學院《比較基因組學及數據分析》2023-2024學年第二學期期末試卷
- 2025至2031年中國水轉印首飾盒行業投資前景及策略咨詢研究報告
- 中國人民大學《體育測量學》2023-2024學年第二學期期末試卷
- 南川grc線條施工方案
- 石嘴山工貿職業技術學院《毒理學基礎實驗》2023-2024學年第二學期期末試卷
- 石家莊信息工程職業學院《SOC數字集成系統設計》2023-2024學年第二學期期末試卷
- 2024-2025學年統編版語文二年級下冊 期中測試題(含答案)
- 遼寧省部分示范性高中2025屆高三下學期4月模擬聯合調研數學試題(無答案)
- 二零二五協警聘用合同范文
- 防雷安全知識培訓課件
- 政務服務人員培訓
- 寵物醫院招聘課件
- 2024年山東司法警官職業學院招聘考試真題
- 2025建筑安全員C證考試(專職安全員)題庫及答案
- 2025年高級工程測量員(三級)技能認定理論考試題庫(含答案)
- 危大專項檢查表
- 施工技術丨安全、質量、綠色施工處處都是亮點
評論
0/150
提交評論