




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.的負倒數是()A. B.- C.3 D.﹣32.如圖,直線m⊥n,在某平面直角坐標系中,x軸∥m,y軸∥n,點A的坐標為(-4,2),點B的坐標為(2,-4),則坐標原點為()A.O1 B.O2 C.O3 D.O43.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.4.如圖是我國南海地區圖,圖中的點分別代表三亞市,永興島,黃巖島,渚碧礁,彈丸礁和曾母暗沙,該地區圖上兩個點之間距離最短的是()A.三亞﹣﹣永興島 B.永興島﹣﹣黃巖島C.黃巖島﹣﹣彈丸礁 D.渚碧礁﹣﹣曾母暗山5.若關于,的二元一次方程組的解也是二元一次方程的解,則的值為A. B. C. D.6.一次函數y1=kx+1﹣2k(k≠0)的圖象記作G1,一次函數y2=2x+3(﹣1<x<2)的圖象記作G2,對于這兩個圖象,有以下幾種說法:①當G1與G2有公共點時,y1隨x增大而減小;②當G1與G2沒有公共點時,y1隨x增大而增大;③當k=2時,G1與G2平行,且平行線之間的距離為65下列選項中,描述準確的是()A.①②正確,③錯誤 B.①③正確,②錯誤C.②③正確,①錯誤 D.①②③都正確7.化簡的結果是()A.±4 B.4 C.2 D.±28.神舟十號飛船是我國“神州”系列飛船之一,每小時飛行約28000公里,將28000用科學記數法表示應為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1059.已知圓心在原點O,半徑為5的⊙O,則點P(-3,4)與⊙O的位置關系是()A.在⊙O內B.在⊙O上C.在⊙O外D.不能確定10.如圖,是半圓的直徑,點、是半圓的三等分點,弦.現將一飛鏢擲向該圖,則飛鏢落在陰影區域的概率為()A. B. C. D.11.矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=()A.1 B. C. D.12.如圖1,在△ABC中,D、E分別是AB、AC的中點,將△ADE沿線段DE向下折疊,得到圖1.下列關于圖1的四個結論中,不一定成立的是()A.點A落在BC邊的中點 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一個等腰三角形的兩邊長分別為4cm和9cm,則它的周長為__cm.14.如圖,在正方形ABCD中,AD=5,點E,F是正方形ABCD內的兩點,且AE=FC=3,BE=DF=4,則EF的長為__________.15.如圖,與中,,,,,AD的長為________.16.如圖,等邊△ABC的邊長為6,∠ABC,∠ACB的角平分線交于點D,過點D作EF∥BC,交AB、CD于點E、F,則EF的長度為_____.17.如圖,圓O的直徑AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的長為________.18.因式分解:________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)旅游公司在景區內配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內最多只能出租一次,且每輛車的日租金x(元)是5的倍數.發現每天的營運規律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.(1)優惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應為多少元?(注:凈收入=租車收入﹣管理費)(2)當每輛車的日租金為多少元時,每天的凈收入最多?20.(6分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.求證:(1)AE=BF;(2)AE⊥BF.21.(6分)為了弘揚學生愛國主義精神,充分展現新時期青少年良好的思想道德素質和精神風貌,豐富學生的校園生活,陶冶師生的情操,某校舉辦了“中國夢?愛國情?成才志”中華經典詩文誦讀比賽.九(1)班通過內部初選,選出了麗麗和張強兩位同學,但學校規定每班只有1個名額,經過老師與同學們商量,用所學的概率知識設計摸球游戲決定誰去,設計的游戲規則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強從B箱摸一個球進行試驗,若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強去;若兩人摸出球顏色不一樣,則放回重復以上動作,直到分出勝負為止.根據以上規則回答下列問題:(1)求一次性摸出一個黃球和一個白球的概率;(2)判斷該游戲是否公平?并說明理由.22.(8分)某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現需降價處理,且經市場調查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數關系式,并求出自變量x的取值范圍;(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?23.(8分)為弘揚中華優秀傳統文化,某校開展“經典誦讀”比賽活動,誦讀材料有《論語》、《大學》、《中庸》(依次用字母A,B,C表示這三個材料),將A,B,C分別寫在3張完全相同的不透明卡片的正面上,背面朝上洗勻后放在桌面上,比賽時小禮先從中隨機抽取一張卡片,記下內容后放回,洗勻后,再由小智從中隨機抽取一張卡片,他倆按各自抽取的內容進行誦讀比賽.小禮誦讀《論語》的概率是;(直接寫出答案)請用列表或畫樹狀圖的方法求他倆誦讀兩個不同材料的概率.24.(10分)某種商品每天的銷售利潤元,銷售單價元,間滿足函數關系式:,其圖象如圖所示.(1)銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?(2)銷售單價在什么范圍時,該種商品每天的銷售利潤不低于21元?25.(10分)如圖,已知拋物線(>0)與軸交于A,B兩點(A點在B點的左邊),與軸交于點C。(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標;(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交軸交于點E,若AE:ED=1:4,求的值.26.(12分)如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.(1)求證:∠BDC=∠A;(2)若CE=4,DE=2,求AD的長.27.(12分)先化簡,再求值:1+xx2-1
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據倒數的定義,互為倒數的兩數乘積為1,2×=1.再求出2的相反數即可解答.【詳解】根據倒數的定義得:2×=1.
因此的負倒數是-2.
故選D.【點睛】本題考查了倒數,解題的關鍵是掌握倒數的概念.2、A【解析】試題分析:因為A點坐標為(-4,2),所以,原點在點A的右邊,也在點A的下邊2個單位處,從點B來看,B(2,-4),所以,原點在點B的左邊,且在點B的上邊4個單位處.如下圖,O1符合.考點:平面直角坐標系.3、B【解析】
首先證明△ABF≌△DEA得到BF=AE;設AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.【點睛】本題考查了正方形的性質:正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質.會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.4、A【解析】
根據兩點直線距離最短可在圖中看出三亞-永興島之間距離最短.【詳解】由圖可得,兩個點之間距離最短的是三亞-永興島.故答案選A.【點睛】本題考查的知識點是兩點之間直線距離最短,解題的關鍵是熟練的掌握兩點之間直線距離最短.5、B【解析】
將k看做已知數求出用k表示的x與y,代入2x+3y=6中計算即可得到k的值.【詳解】解:,①②得:,即,將代入①得:,即,將,代入得:,解得:.故選:.【點睛】此題考查了二元一次方程組的解,以及二元一次方程的解,方程的解即為能使方程左右兩邊成立的未知數的值.6、D【解析】
畫圖,找出G2的臨界點,以及G1的臨界直線,分析出G1過定點,根據k的正負與函數增減變化的關系,結合函數圖象逐個選項分析即可解答.【詳解】解:一次函數y2=2x+3(﹣1<x<2)的函數值隨x的增大而增大,如圖所示,N(﹣1,2),Q(2,7)為G2的兩個臨界點,易知一次函數y1=kx+1﹣2k(k≠0)的圖象過定點M(2,1),直線MN與直線MQ為G1與G2有公共點的兩條臨界直線,從而當G1與G2有公共點時,y1隨x增大而減小;故①正確;當G1與G2沒有公共點時,分三種情況:一是直線MN,但此時k=0,不符合要求;二是直線MQ,但此時k不存在,與一次函數定義不符,故MQ不符合題意;三是當k>0時,此時y1隨x增大而增大,符合題意,故②正確;當k=2時,G1與G2平行正確,過點M作MP⊥NQ,則MN=3,由y2=2x+3,且MN∥x軸,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正確.綜上,故選:D.【點睛】本題是一次函數中兩條直線相交或平行的綜合問題,需要數形結合,結合一次函數的性質逐條分析解答,難度較大.7、B【解析】
根據算術平方根的意義求解即可.【詳解】4,故選:B.【點睛】本題考查了算術平方根的意義,一般地,如果一個正數x的平方等于a,即x2=a,那么這個正數x叫做a的算術平方根,正數a有一個正的算術平方根,0的算術平方根是0,負數沒有算術平方根.8、C【解析】試題分析:28000=1.1×1.故選C.考點:科學記數法—表示較大的數.9、B.【解析】試題解析:∵OP=5,∴根據點到圓心的距離等于半徑,則知點在圓上.故選B.考點:1.點與圓的位置關系;2.坐標與圖形性質.10、D【解析】
連接OC、OD、BD,根據點C,D是半圓O的三等分點,推導出OC∥BD且△BOD是等邊三角形,陰影部分面積轉化為扇形BOD的面積,分別計算出扇形BOD的面積和半圓的面積,然后根據概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點C、D是半圓O的三等分點,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區域的概率,故選:D.【點睛】本題主要考查扇形面積的計算和幾何概率問題:概率=相應的面積與總面積之比,解題的關鍵是把求不規則圖形的面積轉化為求規則圖形的面積.11、C【解析】分析:延長GH交AD于點P,先證△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,從而得出答案.詳解:如圖,延長GH交AD于點P,∵四邊形ABCD和四邊形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中點,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,則GH=PG=×=,故選:C.點睛:本題主要考查矩形的性質,解題的關鍵是掌握全等三角形的判定與性質、矩形的性質、勾股定理等知識點.12、A【解析】
根據折疊的性質明確對應關系,易得∠A=∠1,DE是△ABC的中位線,所以易得B、D答案正確,D是AB中點,所以DB=DA,故C正確.【詳解】根據題意可知DE是三角形ABC的中位線,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A錯,BA≠CA.故選A.【點睛】主要考查了三角形的內角和外角之間的關系以及等腰三角形的性質.還涉及到翻折變換以及中位線定理的運用.(1)三角形的外角等于與它不相鄰的兩個內角和.(1)三角形的內角和是180度.求角的度數常常要用到“三角形的內角和是180°這一隱含的條件.通過折疊變換考查正多邊形的有關知識,及學生的邏輯思維能力.解答此類題最好動手操作.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
底邊可能是4,也可能是9,分類討論,去掉不合條件的,然后可求周長.【詳解】試題解析:①當腰是4cm,底邊是9cm時:不滿足三角形的三邊關系,因此舍去.②當底邊是4cm,腰長是9cm時,能構成三角形,則其周長=4+9+9=1cm.故填1.【點睛】本題考查了等腰三角形的性質和三角形的三邊關系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答.14、【解析】分析:延長AE交DF于G,再根據全等三角形的判定得出△AGD與△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根據勾股定理得出EF的長.詳解:延長AE交DF于G,如圖,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=.故答案為.點睛:本題考查了正方形的性質,關鍵是根據全等三角形的判定和性質得出EG=FG=1,再利用勾股定理計算.15、【解析】
先證明△ABC∽△ADB,然后根據相似三角形的判定與性質列式求解即可.【詳解】∵,,∴△ABC∽△ADB,∴,∵,,∴,∴AD=.故答案為:.【點睛】本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.靈活運用相似三角形的性質進行幾何計算.16、4【解析】試題分析:根據BD和CD分別平分∠ABC和∠ACB,和EF∥BC,利用兩直線平行,內錯角相等和等量代換,求證出BE=DE,DF=FC.然后即可得出答案.解:∵在△ABC中,BD和CD分別平分∠ABC和∠ACB,∴∠EBD=∠DBC,∠FCD=∠DCB,∵EF∥BC,∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,∴BE=DE,DF=EC,∵EF=DE+DF,∴EF=EB+CF=2BE,∵等邊△ABC的邊長為6,∵EF∥BC,∴△ADE是等邊三角形,∴EF=AE=2BE,∴EF==,故答案為4考點:等邊三角形的判定與性質;平行線的性質.17、【解析】試題分析:因為OC=OA,所以∠ACO=,所以∠AOC=45°,又直徑垂直于弦,,所以CE=,所以CD=2CE=.考點:1.解直角三角形、2.垂徑定理.18、a(a+1)(a-1)【解析】
先提公因式,再利用公式法進行因式分解即可.【詳解】解:a(a+1)(a-1)故答案為:a(a+1)(a-1)【點睛】本題考查了因式分解,先提公因式再利用平方差公式是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)每輛車的日租金至少應為25元;(2)當每輛車的日租金為175元時,每天的凈收入最多是5025元.【解析】試題分析:(1)觀光車全部租出每天的凈收入=出租自行車的總收入﹣管理費,由凈收入為正列出不等式求解即可;(2)由函數解析式是分段函數,在每一段內求出函數最大值,比較得出函數的最大值.試題解析:(1)由題意知,若觀光車能全部租出,則0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍數,∴每輛車的日租金至少應為25元;(2)設每輛車的凈收入為y元,當0<x≤100時,y1=50x﹣1100,∵y1隨x的增大而增大,∴當x=100時,y1的最大值為50×100﹣1100=3900;當x>100時,y2=(50﹣)x﹣1100=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,當x=175時,y2的最大值為5025,5025>3900,故當每輛車的日租金為175元時,每天的凈收入最多是5025元.考點:二次函數的應用.20、見解析【解析】
(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延長AE交BF于D,交OB于C,則∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.21、(1);(2)不公平,理由見解析.【解析】
(1)畫樹狀圖列出所有等可能結果數,找到摸出一個黃球和一個白球的結果數,根據概率公式可得答案;(2)結合(1)種樹狀圖根據概率公式計算出兩人獲勝的概率,比較大小即可判斷.【詳解】(1)畫樹狀圖如下:由樹狀圖可知共有20種等可能結果,其中一次性摸出一個黃球和一個白球的有11種結果,∴一次性摸出一個黃球和一個白球的概率為;(2)不公平,由(1)種樹狀圖可知,麗麗去的概率為,張強去的概率為=,∵,∴該游戲不公平.【點睛】本題考查了列表法與樹狀圖法,解題的關鍵是根據題意畫出樹狀圖.22、(1)0≤x<20;(2)降價2.5元時,最大利潤是6125元【解析】
(1)根據“總利潤=單件利潤×銷售量”列出函數解析式,由“確保盈利”可得x的取值范圍.
(2)將所得函數解析式配方成頂點式可得最大值.【詳解】(1)根據題意得y=(70?x?50)(300+20x)=?20x2+100x+6000,∵70?x?50>0,且x≥0,∴0≤x<20.(2)∵y=?20x2+100x+6000=?20(x?)2+6125,∴當x=時,y取得最大值,最大值為6125,答:當降價2.5元時,每星期的利潤最大,最大利潤是6125元.【點睛】本題考查的知識點是二次函數的應用,解題的關鍵是熟練的掌握二次函數的應用.23、(1);(2).【解析】
(1)利用概率公式直接計算即可;(2)列舉出所有情況,看小明和小亮誦讀兩個不同材料的情況數占總情況數的多少即可.【詳解】(1)∵誦讀材料有《論語》,《三字經》,《弟子規》三種,∴小明誦讀《論語》的概率=,(2)列表得:小明小亮ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9種等可能性結果,其中小明和小亮誦讀兩個不同材料結果有6種.所以小明和小亮誦讀兩個不同材料的概率=.【點睛】本題考查了用列表法或畫樹形圖發球隨機事件的概率,用到的知識點為:概率=所求情況數與總情況數之比;得到所求的情況數是解決本題的易錯點.24、(1)10,1;(2).【解析】
(1)將點代入中,求出函數解析式,再根據二次函數的性質求出最大值即可;(2)求出對稱軸為直線,可知點關于對稱軸的對稱點是,再根據圖象判斷出x的取值范圍即可.【詳解】解:(1)圖象過點,,解得..的頂點坐標為.,∴當時,最大=1.答:該商品的銷售單價為10元時,每天的銷售利潤最大,最大利潤為1元.(2)∵函數圖象的對稱軸為直線,可知點關于對稱軸的對稱點是,又∵函數圖象開口向下,∴當時,.答:銷售單價不少于8元且不超過12元時,該種商品每天的銷售利潤不低于21元.【點睛】本題考查了待定系數法求二次函數解析式以及二次函數的性質,解題的關鍵是熟悉待定系數法以及二次函數的性質.25、(1);(2)點P的坐標為;(3).【解析】
(1)利用三角形相似可求AO?OB,再由一元二次方程根與系數關系求AO?OB構造方程求n;(2)求出B、C坐標,設出點Q坐標,利用平行四邊形對角線互相平分性質,分類討論點P坐標,分別代入拋物線解析式,求出Q點坐標;(3)設出點D坐標(a,b),利用相似表示OA,再由一元二次方程根與系數關系表示OB,得到點B坐標,進而找到b與a關系,代入拋物線求a、n即可.【詳解】(1)若△ABC為直角三角形∴△AOC∽△COB∴OC2=AO?OB當y=0時,0=x2-x-n由一元二次方程根與系數關系-OA?OB=OC2n2==
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省臨沂市蘭陵縣第一中學2025屆高三第三次適物理試題含解析
- 湘潭醫衛職業技術學院《分子生物學韓》2023-2024學年第二學期期末試卷
- 山東省菏澤市第一中學2024-2025學年高三“零診”考試物理試題含解析
- 山西水利職業技術學院《鋼琴即興伴奏(2)》2023-2024學年第二學期期末試卷
- 四川省成都市青羊區石室教育集團2025年初三期末物理試題含解析
- 四川師范大學《智能信息處理》2023-2024學年第二學期期末試卷
- 井陘礦區2025屆數學三下期末質量檢測試題含解析
- 四川鐵道職業學院《大學體育(4)》2023-2024學年第二學期期末試卷
- 江西信息應用職業技術學院《電機學》2023-2024學年第二學期期末試卷
- 山西警官職業學院《小學數學課程標準與教材研究》2023-2024學年第二學期期末試卷
- 2024至2030年中國車用氮氧傳感器行業市場發展調研及投資前景分析報告
- 人工肩關節置換(反肩)
- 離婚協議書范本2個孩子可打印
- 人教版 水平四 《一百米跑》說課稿
- 藏族民間舞-熱巴舞智慧樹知到期末考試答案章節答案2024年西藏大學
- 浙江省中小學心理健康教育課程標準
- 《何西阿書一概要》課件
- 超市經銷商轉場協議書
- 中華全國律師協會律師知識產權盡職調查操作指引
- 人教版高一下學期期中考試數學試卷及答案(共兩套)
- 產科診療指南及技術操作規范
評論
0/150
提交評論