




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.的相反數是A. B.2 C. D.2.如圖,已知AB∥CD,DE⊥AC,垂足為E,∠A=120°,則∠D的度數為()A.30° B.60° C.50° D.40°3.下列說法正確的是()A.擲一枚均勻的骰子,骰子停止轉動后,5點朝上是必然事件B.明天下雪的概率為,表示明天有半天都在下雪C.甲、乙兩人在相同條件下各射擊10次,他們成績的平均數相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩定D.了解一批充電寶的使用壽命,適合用普查的方式4.2012﹣2013NBA整個常規賽季中,科比罰球投籃的命中率大約是83.3%,下列說法錯誤的是A.科比罰球投籃2次,一定全部命中B.科比罰球投籃2次,不一定全部命中C.科比罰球投籃1次,命中的可能性較大D.科比罰球投籃1次,不命中的可能性較小5.我國“神七”在2008年9月26日順利升空,宇航員在27日下午4點30分在距離地球表面423公里的太空中完成了太空行走,這是我國航天事業的又一歷史性時刻.將423公里用科學記數法表示應為()米.A.42.3×104 B.4.23×102 C.4.23×105 D.4.23×1066.實數在數軸上的點的位置如圖所示,則下列不等關系正確的是()A.a+b>0 B.a-b<0 C.<0 D.>7.如圖,在平面直角坐標系中,⊙P的圓心坐標是(3,a)(a>3),半徑為3,函數y=x的圖象被⊙P截得的弦AB的長為4,則a的值是()A.4 B.3+ C.3 D.8.計算(x-2)(x+5)的結果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-109.關于2、6、1、10、6的這組數據,下列說法正確的是()A.這組數據的眾數是6 B.這組數據的中位數是1C.這組數據的平均數是6 D.這組數據的方差是1010.下列二次根式中,最簡二次根式的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,AB為⊙0的弦,AB=6,點C是⊙0上的一個動點,且∠ACB=45°,若點M、N分別是AB、BC的中點,則MN長的最大值是______________.12.函數y=+中,自變量x的取值范圍是_____.13.某數學興趣小組在研究下列運算流程圖時發現,取某個實數范圍內的x作為輸入值,則永遠不會有輸出值,這個數學興趣小組所發現的實數x的取值范圍是_____.14.觀察下列一組數,,,,,…探究規律,第n個數是_____.15.如圖,四邊形ABCD內接于⊙O,BD是⊙O的直徑,AC與BD相交于點E,AC=BC,DE=3,AD=5,則⊙O的半徑為___________.16.某商品原價100元,連續兩次漲價后,售價為144元.若平均每次增長率為x,則x=__________.17.如圖,一組平行橫格線,其相鄰橫格線間的距離都相等,已知點A、B、C、D、O都在橫格線上,且線段AD,BC交于點O,則AB:CD等于______.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知∠ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點C.點F是圓O上異于B、C的動點,直線BF與l相交于點E,過點F作AF的垂線交直線BC于點D.如果BE=15,CE=9,求EF的長;證明:①△CDF∽△BAF;②CD=CE;探求動點F在什么位置時,相應的點D位于線段BC的延長線上,且使BC=CD,請說明你的理由.19.(5分)如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點D.過點A作⊙O的切線與OD的延長線交于點P,PC、AB的延長線交于點F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長.20.(8分)如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經過A點的直線交拋物線于點D(2,3).求拋物線的解析式和直線AD的解析式;過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.21.(10分)如圖,一次函數y=k1x+b(k1≠0)與反比例函數的圖象交于點A(-1,2),B(m,-1).求一次函數與反比例函數的解析式;在x軸上是否存在點P(n,0),使△ABP為等腰三角形,請你直接寫出P點的坐標.22.(10分)如圖,點A的坐標為(﹣4,0),點B的坐標為(0,﹣2),把點A繞點B順時針旋轉90°得到的點C恰好在拋物線y=ax2上,點P是拋物線y=ax2上的一個動點(不與點O重合),把點P向下平移2個單位得到動點Q,則:(1)直接寫出AB所在直線的解析式、點C的坐標、a的值;(2)連接OP、AQ,當OP+AQ獲得最小值時,求這個最小值及此時點P的坐標;(3)是否存在這樣的點P,使得∠QPO=∠OBC,若不存在,請說明理由;若存在,請你直接寫出此時P點的坐標.23.(12分)計算:sin30°﹣+(π﹣4)0+|﹣|.24.(14分)某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.請結合以上信息解答下列問題:(1)m=;(2)請補全上面的條形統計圖;(3)在圖2中,“乒乓球”所對應扇形的圓心角的度數為;(4)已知該校共有1200名學生,請你估計該校約有名學生最喜愛足球活動.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
根據相反數的性質可得結果.【詳解】因為-2+2=0,所以﹣2的相反數是2,故選B.【點睛】本題考查求相反數,熟記相反數的性質是解題的關鍵.2、A【解析】分析:根據平行線的性質求出∠C,求出∠DEC的度數,根據三角形內角和定理求出∠D的度數即可.詳解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故選A.點睛:本題考查了平行線的性質和三角形內角和定理的應用,能根據平行線的性質求出∠C的度數是解答此題的關鍵.3、C【解析】
根據必然事件、不可能事件、隨機事件的概念、方差和普查的概念判斷即可.【詳解】A.擲一枚均勻的骰子,骰子停止轉動后,5點朝上是隨機事件,錯誤;B.“明天下雪的概率為”,表示明天有可能下雪,錯誤;C.甲、乙兩人在相同條件下各射擊10次,他們成績的平均數相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩定,正確;D.了解一批充電寶的使用壽命,適合用抽查的方式,錯誤;故選:C【點睛】考查方差,全面調查與抽樣調查,隨機事件,概率的意義,比較基礎,難度不大.4、A【解析】試題分析:根據概率的意義,概率是反映事件發生機會的大小的概念,只是表示發生的機會的大小,機會大也不一定發生。因此。A、科比罰球投籃2次,不一定全部命中,故本選項正確;B、科比罰球投籃2次,不一定全部命中,正確,故本選項錯誤;C、∵科比罰球投籃的命中率大約是83.3%,∴科比罰球投籃1次,命中的可能性較大,正確,故本選項錯誤;D、科比罰球投籃1次,不命中的可能性較小,正確,故本選項錯誤。故選A。5、C【解析】423公里=423000米=4.23×105米.故選C.6、C【解析】
根據點在數軸上的位置,可得a,b的關系,根據有理數的運算,可得答案.【詳解】解:由數軸,得b<-1,0<a<1.A、a+b<0,故A錯誤;B、a-b>0,故B錯誤;C、<0,故C符合題意;D、a2<1<b2,故D錯誤;故選C.【點睛】本題考查了實數與數軸,利用點在數軸上的位置得出b<-1,0<a<1是解題關鍵,又利用了有理數的運算.7、B【解析】試題解析:作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結PB,如圖,∵⊙P的圓心坐標是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D點坐標為(3,3),∴CD=3,∴△OCD為等腰直角三角形,∴△PED也為等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故選B.考點:1.垂徑定理;2.一次函數圖象上點的坐標特征;3.勾股定理.8、C【解析】
根據多項式乘以多項式的法則進行計算即可.【詳解】x-2x+5故選:C.【點睛】考查多項式乘以多項式,掌握多項式乘以多項式的運算法則是解題的關鍵.9、A【解析】
根據方差、算術平均數、中位數、眾數的概念進行分析.【詳解】數據由小到大排列為1,2,6,6,10,它的平均數為(1+2+6+6+10)=5,數據的中位數為6,眾數為6,數據的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故選A.考點:方差;算術平均數;中位數;眾數.10、C【解析】
判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、=,被開方數含分母,不是最簡二次根式;故A選項錯誤;B、=,被開方數為小數,不是最簡二次根式;故B選項錯誤;C、,是最簡二次根式;故C選項正確;D.=,被開方數,含能開得盡方的因數或因式,故D選項錯誤;故選C.考點:最簡二次根式.二、填空題(共7小題,每小題3分,滿分21分)11、3【解析】
根據中位線定理得到MN的最大時,AC最大,當AC最大時是直徑,從而求得直徑后就可以求得最大值.【詳解】解:因為點M、N分別是AB、BC的中點,由三角形的中位線可知:MN=AC,所以當AC最大為直徑時,MN最大.這時∠B=90°又因為∠ACB=45°,AB=6解得AC=6MN長的最大值是3.故答案為:3.【點睛】本題考查了三角形的中位線定理、等腰直角三角形的性質及圓周角定理,解題的關鍵是了解當什么時候MN的值最大,難度不大.12、x≥﹣2且x≠1【解析】分析:根據使分式和二次根式有意義的要求列出關于x的不等式組,解不等式組即可求得x的取值范圍.詳解:∵有意義,∴,解得:且.故答案為:且.點睛:本題解題的關鍵是需注意:要使函數有意義,的取值需同時滿足兩個條件:和,二者缺一不可.13、【解析】
通過找到臨界值解決問題.【詳解】由題意知,令3x-1=x,x=,此時無輸出值當x>時,數值越來越大,會有輸出值;當x<時,數值越來越小,不可能大于10,永遠不會有輸出值故x≤,故答案為x≤.【點睛】本題考查不等式的性質,解題的關鍵是理解題意,學會找到臨界值解決問題.14、【解析】
根據已知得出數字分母與分子的變化規律,分子是連續的正整數,分母是連續的奇數,進而得出第n個數分子的規律是n,分母的規律是2n+1,進而得出這一組數的第n個數的值.【詳解】解:因為分子的規律是連續的正整數,分母的規律是2n+1,
所以第n個數就應該是:,
故答案為.【點睛】此題主要考查了數字變化規律,這類題型在中考中經常出現.對于找規律的題目首先應找出哪些部分發生了變化,是按照什么規律變化的.解題的關鍵是把數據的分子分母分別用組數n表示出來.15、【解析】
如圖,作輔助線CF;證明CF⊥AB(垂徑定理的推論);證明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的長,即可解決問題.【詳解】如圖,連接CO并延長,交AB于點F;∵AC=BC,∴CF⊥AB(垂徑定理的推論);∵BD是⊙O的直徑,∴AD⊥AB;設⊙O的半徑為r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,∴5:r=3:(r-3),解得:r=,故答案為.【點睛】該題主要考查了相似三角形的判定及其性質、垂徑定理的推論等幾何知識點的應用問題;解題的關鍵是作輔助線,構造相似三角形,靈活運用有關定來分析、判斷.16、20%.【解析】試題分析:根據原價為100元,連續兩次漲價x后,現價為144元,根據增長率的求解方法,列方程求x.試題解析:依題意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或-2.2(舍去).考點:一元二次方程的應用.17、2:1.【解析】
過點O作OE⊥AB于點E,延長EO交CD于點F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根據相似三角形對應高的比等于相似比可得,由此即可求得答案.【詳解】如圖,過點O作OE⊥AB于點E,延長EO交CD于點F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,練習本中的橫格線都平行,且相鄰兩條橫格線間的距離都相等,∴=,故答案為:2:1.【點睛】本題考查了相似三角形的的判定與性質,熟練掌握相似三角形對應高的比等于相似比是解本題的關鍵.三、解答題(共7小題,滿分69分)18、(1)(2)證明見解析(3)F在直徑BC下方的圓弧上,且【解析】
(1)由直線l與以BC為直徑的圓O相切于點C,即可得∠BCE=90°,∠BFC=∠CFE=90°,則可證得△CEF∽△BEC,然后根據相似三角形的對應邊成比例,即可求得EF的長;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根據同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,則可證得△CDF∽△BAF;②由△CDF∽△BAF與△CEF∽△BCF,根據相似三角形的對應邊成比例,易證得,又由AB=BC,即可證得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度數,則可得F在⊙O的下半圓上,且.【詳解】(1)解:∵直線l與以BC為直徑的圓O相切于點C.∴∠BCE=90°,又∵BC為直徑,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)證明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故為60°,∴F在直徑BC下方的圓弧上,且.【點睛】考查了相似三角形的判定與性質,圓的切線的性質,圓周角的性質以及三角函數的性質等知識.此題綜合性很強,解題的關鍵是方程思想與數形結合思想的應用.19、(1)證明見解析(2)1【解析】
(1)連接OC,可以證得△OAP≌△OCP,利用全等三角形的對應角相等,以及切線的性質定理可以得到:∠OCP=90°,即OC⊥PC,即可證得;(2)先證△OBC是等邊三角形得∠COB=60°,再由(1)中所證切線可得∠OCF=90°,結合半徑OC=1可得答案.【詳解】(1)連接OC.∵OD⊥AC,OD經過圓心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切線,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切線.(2)∵OB=OC,∠OBC=60°,∴△OBC是等邊三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC?tan∠COB=1.【點睛】本題考查了切線的性質定理以及判定定理,以及直角三角形三角函數的應用,證明圓的切線的問題常用的思路是根據切線的判定定理轉化成證明垂直的問題.20、(1)y=-x2+2x+3;y=x+1;(2)a的值為-3或.【解析】
(1)把點B和D的坐標代入拋物線y=-x2+bx+c得出方程組,解方程組即可;由拋物線解析式求出點A的坐標,設直線AD的解析式為y=kx+a,把A和D的坐標代入得出方程組,解方程組即可;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設F(a-3,-3),代入拋物線解析式,即可得出結果.【詳解】解:(1)把點B和D的坐標代入拋物線y=-x2+bx+c得:解得:b=2,c=3,∴拋物線的解析式為y=-x2+2x+3;當y=0時,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);設直線AD的解析式為y=kx+a,把A和D的坐標代入得:解得:k=1,a=1,∴直線AD的解析式為y=x+1;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,則F點即為(0,3),∵AE=-1-a=2,∴a=-3;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設F(a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=;綜上所述,滿足條件的a的值為-3或.【點睛】本題考查拋物線與x軸的交點;二次函數的性質;待定系數法求二次函數解析式及平行四邊形的判定,綜合性較強.21、(1)反比例函數的解析式為;一次函數的解析式為y=-x+1;(2)滿足條件的P點的坐標為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】
(1)將A點代入求出k2,從而求出反比例函數方程,再聯立將B點代入即可求出一次函數方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根據坐標距離公式計算即可.【詳解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函數的解析式為.∵B(m,-1)在上,∴m=2,由題意,解得:,∴一次函數的解析式為y=-x+1.(2)滿足條件的P點的坐標為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【點睛】本題考查一次函數圖像與性質和反比例函數的圖像和性質,解題的關鍵是待定系數法,分三種情況討論.22、(1)a=;(2)OP+AQ的最小值為2,此時點P的坐標為(﹣1,);(3)P(﹣4,8)或(4,8),【解析】
(1)利用待定系數法求出直線AB解析式,根據旋轉性質確定出C的坐標,代入二次函數解析式求出a的值即可;(2)連接BQ,可得PQ與OB平行,而PQ=OB,得到四邊形PQBO為平行四邊形,當Q在線段AB上時,求出OP+AQ的最小值,并求出此時P的坐標即可;(3)存在這樣的點P,使得∠QPO=∠OBC,如備用圖所示,延長PQ交x軸于點H,設此時點P的坐標為(m,m2),根據正切函數定義確定出m的值,即可確定出P的坐標.【詳解】解:(1)設直線AB解析式為y=kx+b,把A(﹣4,0),B(0,﹣2)代入得:,解得:,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江省寧波市鎮海中學2025年5月第二次模擬考試 化學試卷+答案
- 小學科學六年級上冊相貌各異的我們教學設計
- 幼兒園語言教育與活動設計 課件 第六章 幼兒園語言教育活動實施的價值取向與反思
- 【采礦課件】第二十二章煤炭地下氣化
- 煙草柜組的知識培訓
- 小學教師教學個人心得總結模版
- 高鈉血癥臨床診療規范
- 職場菁英的社團發言稿模版
- 2025發票管理培訓
- 2025年學校學年度工作總結模版
- 提升問題解決能力的培訓
- 消防工程投標方案技術標
- 村民心理知識知識講座
- 管工基礎知識培訓課件
- 軟件項目投標技術方案
- 《虎門銷煙》課件
- 非常規油氣藏地質特征研究
- 藥事管理與法規-暨南大學中國大學mooc課后章節答案期末考試題庫2023年
- 頸椎間盤突出護理查房
- 2023過熱器和再熱器化學清洗導則
- 個體防護裝備PPE重要性課件
評論
0/150
提交評論