




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,四邊形ABCD內接于⊙O,點I是△ABC的內心,∠AIC=124°,點E在AD的延長線上,則∠CDE的度數為()A.56° B.62° C.68° D.78°2.若a=,則實數a在數軸上對應的點的大致位置是()A.點E B.點F C.點G D.點H3.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正確的是()A.a=b?cosA B.c=a?sinA C.a?cotA=b D.a?tanA=b4.若代數式2x2+3x﹣1的值為1,則代數式4x2+6x﹣1的值為()A.﹣3 B.﹣1 C.1 D.35.已知:如圖,在平面直角坐標系xOy中,等邊△AOB的邊長為6,點C在邊OA上,點D在邊AB上,且OC=3BD,反比例函數y=(k≠0)的圖象恰好經過點C和點D,則k的值為()A. B. C. D.6.計算﹣1﹣(﹣4)的結果為()A.﹣3 B.3 C.﹣5 D.57.如圖,兩個轉盤A,B都被分成了3個全等的扇形,在每一扇形內均標有不同的自然數,固定指針,同時轉動轉盤A,B,兩個轉盤停止后觀察兩個指針所指扇形內的數字(若指針停在扇形的邊線上,當作指向上邊的扇形).小明每轉動一次就記錄數據,并算出兩數之和,其中“和為7”的頻數及頻率如下表:轉盤總次數10203050100150180240330450“和為7”出現頻數27101630465981110150“和為7”出現頻率0.200.350.330.320.300.300.330.340.330.33如果實驗繼續進行下去,根據上表數據,出現“和為7”的頻率將穩定在它的概率附近,估計出現“和為7”的概率為()A.0.33 B.0.34 C.0.20 D.0.358.如圖,在正方形ABCD中,G為CD邊中點,連接AG并延長,分別交對角線BD于點F,交BC邊延長線于點E.若FG=2,則AE的長度為()A.6 B.8C.10 D.129.如圖,在平面直角坐標系中Rt△ABC的斜邊BC在x軸上,點B坐標為(1,0),AC=2,∠ABC=30°,把Rt△ABC先繞B點順時針旋轉180°,然后再向下平移2個單位,則A點的對應點A′的坐標為()A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)10.如圖,已知直線AD是⊙O的切線,點A為切點,OD交⊙O于點B,點C在⊙O上,且∠ODA=36°,則∠ACB的度數為()A.54°B.36°C.30°D.27°二、填空題(本大題共6個小題,每小題3分,共18分)11.在一張直角三角形紙片的兩直角邊上各取一點,分別沿斜邊中點與這兩點的連線剪去兩個三角形,剩下的部分是如圖所示的四邊形,AB∥CD,CD⊥BC于C,且AB、BC、CD邊長分別為2,4,3,則原直角三角形紙片的斜邊長是_______.12.分解因式=________,=__________.13.中國古代的數學專著《九章算術》有方程組問題“五只雀,六只燕,共重1斤(等于16兩),雀重燕輕.互換其中一只,恰好一樣重.”設每只雀、燕的重量各為x兩,y兩,則根據題意,可得方程組為___.14.已知雙曲線經過點(-1,2),那么k的值等于_______.15.如圖,直線y1=mx經過P(2,1)和Q(-4,-2)兩點,且與直線y2=kx+b交于點P,則不等式kx+b>mx>-2的解集為_________________.16.如圖,AB是⊙O的直徑,點C是⊙O上的一點,若BC=6,AB=10,OD⊥BC于點D,則OD的長為______.三、解答題(共8題,共72分)17.(8分)在第23個世界讀書日前夕,我市某中學為了解本校學生的每周課外閱讀時間用t表示,單位:小時,采用隨機抽樣的方法進行問卷調查,調查結果按,,,分為四個等級,并依次用A,B,C,D表示,根據調查結果統計的數據,繪制成了如圖所示的兩幅不完整的統計圖,由圖中給出的信息解答下列問題:求本次調查的學生人數;求扇形統計圖中等級B所在扇形的圓心角度數,并把條形統計圖補充完整;若該校共有學生1200人,試估計每周課外閱讀時間滿足的人數.18.(8分)為迎接“世界華人炎帝故里尋根節”,某工廠接到一批紀念品生產訂單,按要求在15天內完成,約定這批紀念品的出廠價為每件20元,設第x天(1≤x≤15,且x為整數)每件產品的成本是p元,p與x之間符合一次函數關系,部分數據如表:天數(x)13610每件成本p(元)7.58.51012任務完成后,統計發現工人李師傅第x天生產的產品件數y(件)與x(天)滿足如下關系:y=,設李師傅第x天創造的產品利潤為W元.直接寫出p與x,W與x之間的函數關系式,并注明自變量x的取值范圍:求李師傅第幾天創造的利潤最大?最大利潤是多少元?任務完成后.統計發現平均每個工人每天創造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創造的利潤超過該平均值,則該工人當天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?19.(8分)在平面直角坐標系xOy中,點A在x軸的正半軸上,點B的坐標為(0,4),BC平分∠ABO交x軸于點C(2,0).點P是線段AB上一個動點(點P不與點A,B重合),過點P作AB的垂線分別與x軸交于點D,與y軸交于點E,DF平分∠PDO交y軸于點F.設點D的橫坐標為t.(1)如圖1,當0<t<2時,求證:DF∥CB;(2)當t<0時,在圖2中補全圖形,判斷直線DF與CB的位置關系,并證明你的結論;(3)若點M的坐標為(4,-1),在點P運動的過程中,當△MCE的面積等于△BCO面積的倍時,直接寫出此時點E的坐標.20.(8分)一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:(1)甲,乙兩組工作一天,商店各應付多少錢?(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?(3)若裝修完后,商店每天可贏利200元,你認為如何安排施工更有利于商店?請你幫助商店決策.(可用(1)(2)問的條件及結論)21.(8分)現在,某商場進行促銷活動,出售一種優惠購物卡(注:此卡只作為購物優惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場按標價的8折購物.顧客購買多少元金額的商品時,買卡與不買卡花錢相等?在什么情況下購物合算?小張要買一臺標價為3500元的冰箱,如何購買合算?小張能節省多少元錢?小張按合算的方案,把這臺冰箱買下,如果某商場還能盈利25%,這臺冰箱的進價是多少元?22.(10分)(1)計算:;(2)化簡,然后選一個合適的數代入求值.23.(12分)如圖,在△ABC中,∠ACB=90°,AC=1.sin∠A=,點D是BC的中點,點P是AB上一動點(不與點B重合),延長PD至E,使DE=PD,連接EB、EC.(1)求證;四邊形PBEC是平行四邊形;(2)填空:①當AP的值為時,四邊形PBEC是矩形;②當AP的值為時,四邊形PBEC是菱形.24.△ABC內接于⊙O,AC為⊙O的直徑,∠A=60°,點D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長EO交⊙O于點G,在OG上取點F,使OF=2OE,延長BD到點M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:由點I是△ABC的內心知∠BAC=2∠IAC、∠ACB=2∠ICA,從而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圓內接四邊形的外角等于內對角可得答案.詳解:∵點I是△ABC的內心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四邊形ABCD內接于⊙O,∴∠CDE=∠B=68°,故選C.點睛:本題主要考查三角形的內切圓與內心,解題的關鍵是掌握三角形的內心的性質及圓內接四邊形的性質.2、C【解析】
根據被開方數越大算術平方根越大,可得答案.【詳解】解:∵<<,∴3<<4,∵a=,∴3<a<4,故選:C.【點睛】本題考查了實數與數軸,利用被開方數越大算術平方根越大得出3<<4是解題關鍵.3、C【解析】∵∠C=90°,∴cosA=,sinA=,tanA=,cotA=,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有選項C正確,故選C.【點睛】本題考查了三角函數的定義,熟練掌握三角函數的定義并且靈活運用是解題的關鍵.4、D【解析】
由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1計算可得.【詳解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,則4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本題答案為:D.【點睛】本題主要考查代數式的求值,運用整體代入的思想是解題的關鍵.5、A【解析】試題分析:過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,如圖所示.設BD=a,則OC=3a.∵△AOB為邊長為1的等邊三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE==a,∴點C(a,a).同理,可求出點D的坐標為(1﹣a,a).∵反比例函數(k≠0)的圖象恰好經過點C和點D,∴k=a×a=(1﹣a)×a,∴a=,k=.故選A.6、B【解析】
原式利用減法法則變形,計算即可求出值.【詳解】,故選:B.【點睛】本題主要考查了有理數的加減,熟練掌握有理數加減的運算法則是解決本題的關鍵.7、A【解析】
根據上表數據,出現“和為7”的頻率將穩定在它的概率附近,估計出現“和為7”的概率即可.【詳解】由表中數據可知,出現“和為7”的概率為0.33.故選A.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.8、D【解析】
根據正方形的性質可得出AB∥CD,進而可得出△ABF∽△GDF,根據相似三角形的性質可得出=2,結合FG=2可求出AF、AG的長度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【詳解】解:∵四邊形ABCD為正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故選:D.【點睛】本題考查了相似三角形的判定與性質、正方形的性質,利用相似三角形的性質求出AF的長度是解題的關鍵.9、D【解析】解:作AD⊥BC,并作出把Rt△ABC先繞B點順時針旋轉180°后所得△A1BC1,如圖所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵點B坐標為(1,0),∴A點的坐標為(4,).∵BD=1,∴BD1=1,∴D1坐標為(﹣2,0),∴A1坐標為(﹣2,﹣).∵再向下平移2個單位,∴A′的坐標為(﹣2,﹣﹣2).故選D.點睛:本題主要考查了直角三角形的性質,勾股定理,旋轉的性質和平移的性質,作出圖形利用旋轉的性質和平移的性質是解答此題的關鍵.10、D【解析】解:∵AD為圓O的切線,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD與∠ACB都對,∴∠ACB=∠AOD=27°.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、45或1【解析】
先根據題意畫出圖形,再根據勾股定理求出斜邊上的中線,最后即可求出斜邊的長.【詳解】①如圖:因為AC=22+4點A是斜邊EF的中點,所以EF=2AC=45,②如圖:因為BD=32點D是斜邊EF的中點,所以EF=2BD=1,綜上所述,原直角三角形紙片的斜邊長是45或1,故答案是:45或1.【點睛】此題考查了圖形的剪拼,解題的關鍵是能夠根據題意畫出圖形,在解題時要注意分兩種情況畫圖,不要漏解.12、【解析】此題考查因式分解答案點評:利用提公因式、平方差公式、完全平方公式分解因式13、【解析】設每只雀、燕的重量各為x兩,y兩,由題意得:故答案是:或.14、-1【解析】
分析:根據點在曲線上點的坐標滿足方程的關系,將點(-1,2)代入,得:,解得:k=-1.15、-4<x<1【解析】將P(1,1)代入解析式y1=mx,先求出m的值為,將Q點縱坐標y=1代入解析式y=x,求出y1=mx的橫坐標x=-4,即可由圖直接求出不等式kx+b>mx>-1的解集為y1>y1>-1時,x的取值范圍為-4<x<1.
故答案為-4<x<1.
點睛:本題考查了一次函數與一元一次不等式,求出函數圖象的交點坐標及函數與x軸的交點坐標是解題的關鍵.16、1【解析】
根據垂徑定理求得BD,然后根據勾股定理求得即可.【詳解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==1.故答案為1.【點睛】本題考查垂徑定理及其勾股定理,熟記定理并靈活應用是本題的解題關鍵.三、解答題(共8題,共72分)17、本次調查的學生人數為200人;B所在扇形的圓心角為,補全條形圖見解析;全校每周課外閱讀時間滿足的約有360人.【解析】【分析】根據等級A的人數及所占百分比即可得出調查學生人數;先計算出C在扇形圖中的百分比,用在扇形圖中的百分比可計算出B在扇形圖中的百分比,再計算出B在扇形的圓心角;總人數課外閱讀時間滿足的百分比即得所求.【詳解】由條形圖知,A級的人數為20人,由扇形圖知:A級人數占總調查人數的,所以:人,即本次調查的學生人數為200人;由條形圖知:C級的人數為60人,所以C級所占的百分比為:,B級所占的百分比為:,B級的人數為人,D級的人數為:人,B所在扇形的圓心角為:,補全條形圖如圖所示:;因為C級所占的百分比為,所以全校每周課外閱讀時間滿足的人數為:人,答:全校每周課外閱讀時間滿足的約有360人.【點睛】本題考查了扇形圖和條形圖的相關知識,從統計圖中找到必要的信息進行解題是關鍵.扇形圖中某項的百分比,扇形圖中某項圓心角的度數該項在扇形圖中的百分比.18、(1)W=;(2)李師傅第8天創造的利潤最大,最大利潤是324元;(3)李師傅共可獲得160元獎金.【解析】
(1)根據題意和表格中的數據可以求得p與x,W與x之間的函數關系式,并注明自變量x的取值范圍:(2)根據題意和題目中的函數表達式可以解答本題;(3)根據(2)中的結果和不等式的性質可以解答本題.【詳解】(1)設p與x之間的函數關系式為p=kx+b,則有,解得,,即p與x的函數關系式為p=0.5x+7(1≤x≤15,x為整數),當1≤x<10時,W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,當10≤x≤15時,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=;(2)當1≤x<10時,W=﹣x2+16x+260=﹣(x﹣8)2+324,∴當x=8時,W取得最大值,此時W=324,當10≤x≤15時,W=﹣20x+520,∴當x=10時,W取得最大值,此時W=320,∵324>320,∴李師傅第8天創造的利潤最大,最大利潤是324元;(3)當1≤x<10時,令﹣x2+16x+260=299,得x1=3,x2=13,當W>299時,3<x<13,∵1≤x<10,∴3<x<10,當10≤x≤15時,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李師傅獲得獎金的的天數是第4天到第11天,李師傅共獲得獎金為:20×(11﹣3)=160(元),即李師傅共可獲得160元獎金.【點睛】本題考查了一次函數的應用,二次函數的應用等,明確題意,找出各個量之間的關系,確立函數解析式,利用函數的性質進行解答是關鍵.19、(1)詳見解析;(2)詳見解析;(3)詳見解析.【解析】
(1)求出∠PBO+∠PDO=180°,根據角平分線定義得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根據平行線的性質得出即可;
(2)求出∠ABO=∠PDA,根據角平分線定義得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根據垂直定義得出即可;
(3)分為兩種情況:根據三角形面積公式求出即可.【詳解】(1)證明:如圖1.
∵在平面直角坐標系xOy中,點A在x軸的正半軸上,點B的坐標為(0,4),
∴∠AOB=90°.
∵DP⊥AB于點P,
∴∠DPB=90°,
∵在四邊形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,
∴∠PBO+∠PDO=180°,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠PBO,∠ODF=∠PDO,
∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,
∵在△FDO中,∠OFD+∠ODF=90°,
∴∠CBO=∠DFO,
∴DF∥CB.
(2)直線DF與CB的位置關系是:DF⊥CB,
證明:延長DF交CB于點Q,如圖2,
∵在△ABO中,∠AOB=90°,
∴∠BAO+∠ABO=90°,
∵在△APD中,∠APD=90°,
∴∠PAD+∠PDA=90°,
∴∠ABO=∠PDA,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠ABO,∠CDQ=∠PDO,
∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,
∴∠CDQ+∠DCQ=90°,
∴在△QCD中,∠CQD=90°,
∴DF⊥CB.
(3)解:過M作MN⊥y軸于N,
∵M(4,-1),
∴MN=4,ON=1,
當E在y軸的正半軸上時,如圖3,
∵△MCE的面積等于△BCO面積的倍時,
∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,
解得:OE=,
當E在y軸的負半軸上時,如圖4,
×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,
解得:OE=,
即E的坐標是(0,)或(0,-).【點睛】本題考查了平行線的性質和判定,三角形內角和定理,坐標與圖形性質,三角形的面積的應用,題目綜合性比較強,有一定的難度.20、(1)甲、乙兩組工作一天,商店各應付300元和140元;(2)單獨請乙組需要的費用少;(3)甲乙合作施工更有利于商店.【解析】
(1)設甲組單獨工作一天商店應付x元,乙組單獨工作一天商店應付y元,根據總費用與時間的關系建立方程組求出其解即可;
(2)由甲乙單獨完成需要的時間,再結合(1)求出甲、乙兩組單獨完成的費用進行比較就可以得出結論;
(3)先比較甲、乙單獨裝修的時間和費用誰對商店經營有利,再比較合作裝修與甲單獨裝修對商店的有利經營情況,從而可以得出結論.【詳解】解:(1)設:甲組工作一天商店應付x元,乙組工作一天商店付y元.由題意得:解得:答:甲、乙兩組工作一天,商店各應付300元和140元(2)單獨請甲組需要的費用:300×12=3600元.單獨請乙組需要的費用:24×140=3360元.答:單獨請乙組需要的費用少.(3)請兩組同時裝修,理由:甲單獨做,需費用3600元,少贏利200×12=2400元,相當于損失6000元;乙單獨做,需費用3360元,少贏利200X24=4800元,相當于損失8160元;甲乙合作,需費用3520元,少贏利200×8=1600元,相當于損失5120元;因為5120<6000<8160,所以甲乙合作損失費用最少,答:甲乙合作施工更有利于商店.【點睛】考查列二元一次方程組解實際問題的運用,工作總量=工作效率×工作時間的運用,設計推理方案的運用,解答時建立方程組求出甲乙單獨完成的工作時間是關鍵.21、(1)當顧客消費等于1500元時買卡與不買卡花錢相等;當顧客消費大于1500元時買卡合算;(2)小張買卡合算,能節省400元錢;(3)這臺冰箱的進價是2480元.【解析】
(1)設顧客購買x元金額的商品時,買卡與不買卡花錢相等,根據花300元買這種卡后,憑卡可在這家商場按標價的8折購物,列出方程,解方程即可;根據x的值說明在什么情況下購物合算
(2)根據(1)中所求即可得出怎樣購買合算,以及節省的錢數;(3)設進價為y元,根據售價-進價=利潤,則可得出方程即可.【詳解】解:設顧客購買x元金額的商品時,買卡與不買卡花錢相等.根據題意,得300+0.8x=x,解得x=1500,所以當顧客消費等于1500元時,買卡與不買卡花錢相等;當顧客消費少于1500元時,300+0.8xx不買卡合算;當顧客消費大于1500元時,300+0.8xx買卡合算;(2)小張買卡合算,3500﹣(300+3500×0.8)=400,所以,小張能節省400元錢;(3)設進價為y元,根據題意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:這臺冰箱的進價是2480元.【點睛】此題主要考查了一元一次方程的應用,找準等量關系,正確列出一元一次方程是解題的關鍵.22、(1)0;(2),答案不唯一,只要x≠±1,0即可,當x=10時,.【解析】
(1)根據有理數的乘方法則、零次冪的性質、特殊角的三角函數值計算即可;(2)先把括號內通分,再把除法運算化為乘法運算,然后約分,再根據分式有意義的條件把x=10代入計算即可.【詳解】解:(1)原式==1﹣3+2+1﹣1=0;(2)原式==由題意可知,x≠1∴當x=10時,原式==.【點睛】本題考查實數的運算;零指數冪;負整數指數冪;特殊角的三角函數值;分式的化簡求值,掌握計算法則正確計算是本題的解題關鍵.23、證明見解析;(2)①9;②12.5.【解析】
(1)根據對角線互相平分的四邊形為平行四邊形證明即可;(2)①若四邊形PBEC是矩形,則∠APC=90°,求得AP即可;②若四邊形PBEC是菱形,則CP=PB,求得AP即可.【詳解】∵點D是BC的中點,∴BD=CD.∵DE=PD,∴四邊形PBEC是平行四邊形;(2)①當∠APC=90°時,四邊形PBEC是矩形.∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴當AP的值為9時,四邊形PBEC是矩形;②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以設BC=4x,AB=5x,則(4x)2+12=(5x)2,解得:x=5,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 綜合性語文能力的測試與評估試題及答案
- 2024年心理咨詢師考試必修理論知識與試題及答案
- 渠道管理中的馬工學思路試題及答案
- 2025-2030年連續轉子項目投資價值分析報告
- 心理咨詢師考試全覆蓋試題及答案
- 2025-2030年車載電視系統項目投資價值分析報告
- 文學作品中的銀色背景與主旨考查問題題目試題及答案
- 2025-2030年褲腰頭項目商業計劃書
- 2025-2030年蒸煮殺菌設備項目投資價值分析報告
- 自我發展測試心理咨詢師試題及答案
- 一例透析高血壓患者護理查房
- 云南麗江鮮花餅市場推廣調查研究報告
- 鹽酸右美托咪定鼻噴霧劑-臨床用藥解讀
- 《學習遵義會議精神》班會課件
- 干部基本信息審核認定表
- 2024年英語B級考試真題及答案
- 2024年社會工作者職業水平《社會工作實務(初級)》考試題及答案
- 施工升降機安裝拆卸安全教育
- 長輸管線焊接技術交底
- 醫院保安服務方案(技術方案)
- 家長學校課程建設研究
評論
0/150
提交評論