




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.2.若的內角滿足,則的值為()A. B. C. D.3.已知函數,則()A. B.1 C.-1 D.04.記單調遞增的等比數列的前項和為,若,,則()A. B. C. D.5.設雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.6.已知的內角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.7.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設平面平面,則下列結論中不成立的是()A.平面 B.C.當時,平面 D.當m變化時,直線l的位置不變8.已知角的終邊經過點,則的值是A.1或 B.或 C.1或 D.或9.如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.10.如圖所示的程序框圖輸出的是126,則①應為()A. B. C. D.11.執行如圖的程序框圖,若輸出的結果,則輸入的值為()A. B.C.3或 D.或12.將函數的圖象向左平移個單位長度,得到的函數為偶函數,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點是橢圓上一點,過點的一條直線與圓相交于兩點,若存在點,使得,則橢圓的離心率取值范圍為_________.14.命題“”的否定是______.15.已知平面向量、的夾角為,且,則的最大值是_____.16.若函數與函數,在公共點處有共同的切線,則實數的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)第十四屆全國冬季運動會召開期間,某校舉行了“冰上運動知識競賽”,為了解本次競賽成績情況,從中隨機抽取部分學生的成績(得分均為整數,滿分100分)進行統計,請根據頻率分布表中所提供的數據,解答下列問題:(1)求、、的值及隨機抽取一考生其成績不低于70分的概率;(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識”志愿活動,并指定2名負責人,求從第4組抽取的學生中至少有一名是負責人的概率.組號分組頻數頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計1.0018.(12分)已知函數.(1)解不等式;(2)記函數的最小值為,正實數、滿足,求證:.19.(12分)如圖,四邊形中,,,,沿對角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.20.(12分)(某工廠生產零件A,工人甲生產一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產一件零件A,是一等品、二等品、三等品的概率分別為.己知生產一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據生產一件零件A給工廠帶來的效益的期望值判斷甲乙技術的好壞;(2)為鼓勵工人提高技術,工廠進行技術大賽,最后甲乙兩人進入了決賽.決賽規則是:每一輪比賽,甲乙各生產一件零件A,如果一方生產的零件A品級優干另一方生產的零件,則該方得分1分,另一方得分-1分,如果兩人生產的零件A品級一樣,則兩方都不得分,當一方總分為4分時,比賽結束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.21.(12分)已知等差數列的前n項和為,,公差,、、成等比數列,數列滿足.(1)求數列,的通項公式;(2)已知,求數列的前n項和.22.(10分)已知函數(),是的導數.(1)當時,令,為的導數.證明:在區間存在唯一的極小值點;(2)已知函數在上單調遞減,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
設,則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設,則,在中,易得,所以,解得(負值舍去),所以橢圓的離心率.故選B.2、A【解析】
由,得到,得出,再結合三角函數的基本關系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內角,所以,所以,因為,所以.故選:A.【點睛】本題主要考查了正弦函數的性質,以及三角函數的基本關系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.3、A【解析】
由函數,求得,進而求得的值,得到答案.【詳解】由題意函數,則,所以,故選A.【點睛】本題主要考查了分段函數的求值問題,其中解答中根據分段函數的解析式,代入求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.4、C【解析】
先利用等比數列的性質得到的值,再根據的方程組可得的值,從而得到數列的公比,進而得到數列的通項和前項和,根據后兩個公式可得正確的選項.【詳解】因為為等比數列,所以,故即,由可得或,因為為遞增數列,故符合.此時,所以或(舍,因為為遞增數列).故,.故選C.【點睛】一般地,如果為等比數列,為其前項和,則有性質:(1)若,則;(2)公比時,則有,其中為常數且;(3)為等比數列()且公比為.5、A【解析】
由題意,根據雙曲線的對稱性知在軸上,設,則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.6、C【解析】
由,化簡得到的值,根據余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理,當且僅當時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.【點睛】本題主要考查了代數式的化簡,余弦定理,以及基本不等式的綜合應用,試題難度較大,屬于中檔試題,著重考查了推理與運算能力.7、C【解析】
根據線面平行與垂直的判定與性質逐個分析即可.【詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C【點睛】本題考查直線與平面的位置關系.屬于中檔題.8、B【解析】
根據三角函數的定義求得后可得結論.【詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數的定義求一個角的三角函數值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據三角函數的定義求解即可.9、C【解析】
畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,
該幾何體的表面積:.故選C.【點睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關鍵.10、B【解析】試題分析:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環的條件.解:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環的條件.∵S=2+22+…+21=121,故①中應填n≤1.故選B點評:算法是新課程中的新增加的內容,也必然是新高考中的一個熱點,應高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導致錯誤.11、D【解析】
根據逆運算,倒推回求x的值,根據x的范圍取舍即可得選項.【詳解】因為,所以當,解得
,所以3是輸入的x的值;當時,解得,所以是輸入的x的值,所以輸入的x的值為
或3,故選:D.【點睛】本題考查了程序框圖的簡單應用,通過結果反求輸入的值,屬于基礎題.12、D【解析】
利用三角函數的圖象變換求得函數的解析式,再根據三角函數的性質,即可求解,得到答案.【詳解】將將函數的圖象向左平移個單位長度,可得函數又由函數為偶函數,所以,解得,因為,當時,,故選D.【點睛】本題主要考查了三角函數的圖象變換,以及三角函數的性質的應用,其中解答中熟記三角函數的圖象變換,合理應用三角函數的圖象與性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設,設出直線AB的參數方程,利用參數的幾何意義可得,由題意得到,據此求得離心率的取值范圍.【詳解】設,直線AB的參數方程為,(為參數)代入圓,化簡得:,,,,存在點,使得,,即,,,,故答案為:【點睛】本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運用,考查直線參數方程的運用,屬于中檔題.14、,【解析】
根據特稱命題的否定為全稱命題得到結果即可.【詳解】解:因為特稱命題的否定是全稱命題,所以,命題,則該命題的否定是:,故答案為:,.【點睛】本題考查全稱命題與特稱命題的否定關系,屬于基礎題.15、【解析】
建立平面直角坐標系,設,可得,進而可得出,,由此將轉化為以為自變量的三角函數,利用三角恒等變換思想以及正弦函數的有界性可得出結果.【詳解】根據題意建立平面直角坐標系如圖所示,設,,以、為鄰邊作平行四邊形,則,設,則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當時,取最大值.故答案為:.【點睛】本題考查了向量的數量積最值的計算,將問題轉化為角的三角函數的最值問題是解答的關鍵,考查計算能力,屬于難題.16、【解析】
函數的定義域為,求出導函數,利用曲線與曲線公共點為由于在公共點處有共同的切線,解得,,聯立解得的值.【詳解】解:函數的定義域為,,,設曲線與曲線公共點為,由于在公共點處有共同的切線,∴,解得,.由,可得.聯立,解得.故答案為:.【點睛】本題考查函數的導數的應用,切線方程的求法,考查轉化思想以及計算能力,是中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),,,;(2)【解析】
(1)根據第1組的頻數和頻率求出,根據頻數、頻率、的關系分別求出,進而求出不低于70分的概率;(2)由(1)得,根據分層抽樣原則,分別從抽出2人,2人,1人,并按照所在組對抽出的5人編號,列出所有2名負責人的抽取方法,得出第4組抽取的學生中至少有一名是負責人的抽法數,由古典概型概率公式,即可求解.【詳解】(1),,,由頻率分布表可得成績不低于70分的概率約為:(2)因為第3、4、5組共有50名學生,所以利用分層抽樣在50名學生中抽取5名學生,每組分別為:第3組:人,第4組:人,第5組:人,所以第3、4、5組分別抽取2人,2人,1人設第3組的3位同學為、,第4組的2位同學為、,第5組的1位同學為,則從五位同學中抽兩位同學有10種可能抽法如下:,,,,,,,,,,其中第4組的2位同學、至少有一位同學是負責人有7種抽法,故所求的概率為.【點睛】本題考查補全頻率分布表、古典概型的概率,屬于基礎題.18、(1);(2)見解析.【解析】
(1)分、、三種情況解不等式,綜合可得出原不等式的的解集;(2)利用絕對值三角不等式可求得函數的最小值為,進而可得出,再將代數式與相乘,利用基本不等式求得的最小值,進而可證得結論成立.【詳解】(1)當時,由,得,即,解得,此時;當時,由,得,即,解得,此時;當時,由,得,即,解得,此時.綜上所述,不等式的解集為;(2),當且僅當時取等號,所以,.所以,當且僅當,即,時等號成立,所以.所以,即.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用基本不等式證明不等式成立,涉及絕對值三角不等式的應用,考查運算求解能力,屬于中等題.19、(1)見證明;(2)【解析】
(1)取的中點,連.可證得,,于是可得平面,進而可得結論成立.(2)運用幾何法或向量法求解可得所求角的正弦值.【詳解】(1)證明:取的中點,連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點,連結,∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線與平面所成的角.設,則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標系.不妨設,則在直角三角形中,可得,作于,則有平面幾何知識可得,∴.又可得,.∴,.設平面的一個法向量為,由,得,令,則得.又,設直線與平面所成的角為,則.所以直線與平面所成角的正弦值為.【點睛】利用向量法求解直線和平面所成角時,關鍵點是恰當建立空間直角坐標系,確定斜線的方向向量和平面的法向量.解題時通過平面的法向量和直線的方向向量來求,即求出斜線的方向向量與平面的法向量所夾的銳角或鈍角的補角,取其余角就是斜線與平面所成的角.求解時注意向量的夾角與線面角間的關系.20、(1)乙的技術更好,見解析(2)①,;②【解析】
(1)列出分布列,求出期望,比較大小即可;(2)①直接根據概率的意義可得P0,P8;②設每輪比賽甲得分為,求出每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差數列,根據可得答案.【詳解】(1)記甲乙各生產一件零件給工廠帶來的效益分別為元、元,隨機變量,的分布列分別為10521052所以,,所以,即乙的技術更好(2)①表示的是甲得分時,甲最終獲勝的概率,所以,表示的是甲得4分時,甲最終獲勝的概率,所以;②設每輪比賽甲得分為,則每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得時,最終獲勝有以下三種情況:(1)下一輪得1分并最終獲勝,概率為;(2)下一輪得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 ISO 15118-10:2025 EN Road vehicles - Vehicle to grid communication interface - Part 10: Physical layer and data link layer requirements for single-pair Ethernet
- 【正版授權】 IEC 62304:2006 EN-D Medical device software - Software life cycle processes
- 【正版授權】 IEC 61834-2:1998 FR-D Recording - Helical-scan digital video cassette recording system using 6,35 mm magnetic tape for consumer use 525-60,625-50,1125-60 and 1250-50 syst
- 【正版授權】 IEC 60335-2-73:2002+AMD1:2006 CSV FR-D Household and similar electrical appliances - Safety - Part 2-73: Particular requirements for fixed immersion heaters
- 皮瓣移植患者護理
- 學前教育一日生活
- 大班整合課程:我和我的外婆
- 汽車行業的營銷案
- 2025年中學校青年老師培育實施方案
- 2025年學校五班級上冊音樂教學工作方案
- 博物館布展項目施工組織設計
- 大學藻類課件教學課件
- 報關實務-教學課件 第一章 海關概念
- OECD -二十國集團 經合組織公司治理原則2023
- 體育中國學習通超星期末考試答案章節答案2024年
- 化妝品生產質量管理規范與流程
- 矩形的判定公開課公開課獲獎課件百校聯賽一等獎課件
- GB/T 39673.6-2024住宅和樓宇電子系統(HBES)及樓宇自動化和控制系統(BACS)第6部分:規劃和安裝要求
- 醫療機構消防安全突出火災風險和檢查要點
- 焊接工程勞務分包
- 中國礦業大學《自然辯證法》2022-2023學年期末試卷
評論
0/150
提交評論