2022年河南省周口市扶溝縣包屯高級中學高考考前提分數學仿真卷含解析_第1頁
2022年河南省周口市扶溝縣包屯高級中學高考考前提分數學仿真卷含解析_第2頁
2022年河南省周口市扶溝縣包屯高級中學高考考前提分數學仿真卷含解析_第3頁
2022年河南省周口市扶溝縣包屯高級中學高考考前提分數學仿真卷含解析_第4頁
2022年河南省周口市扶溝縣包屯高級中學高考考前提分數學仿真卷含解析_第5頁
免費預覽已結束,剩余15頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.公元前世紀,古希臘哲學家芝諾發表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜的倍.當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規律,若阿基里斯和烏龜的距離恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米2.過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準線與軸交于,的面積為,則()A. B. C. D.3.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.4.函數()的圖像可以是()A. B.C. D.5.已知平面向量滿足與的夾角為,且,則實數的值為()A. B. C. D.6.學業水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業水平測試成績如圖所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人7.已知為定義在上的偶函數,當時,,則()A. B. C. D.8.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.9.如圖是國家統計局公布的年入境游客(單位:萬人次)的變化情況,則下列結論錯誤的是()A.2014年我國入境游客萬人次最少B.后4年我國入境游客萬人次呈逐漸增加趨勢C.這6年我國入境游客萬人次的中位數大于13340萬人次D.前3年我國入境游客萬人次數據的方差小于后3年我國入境游客萬人次數據的方差10.已知函數滿足=1,則等于()A.- B. C.- D.11.已知隨機變量服從正態分布,且,則()A. B. C. D.12.已知函數是定義在上的偶函數,當時,,則,,的大小關系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,i為虛數單位,則正實數的值為______.14.已知點是拋物線的準線上一點,F為拋物線的焦點,P為拋物線上的點,且,若雙曲線C中心在原點,F是它的一個焦點,且過P點,當m取最小值時,雙曲線C的離心率為______.15.在的二項展開式中,所有項的系數之和為1024,則展開式常數項的值等于_______.16.設滿足約束條件,則目標函數的最小值為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個特征向量為α118.(12分)某超市在節日期間進行有獎促銷,規定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機會.摸獎規則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續摸球.按規定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.(1)求1名顧客摸球2次摸獎停止的概率;(2)記X為1名顧客摸獎獲得的獎金數額,求隨機變量X的分布列和數學期望.19.(12分)已知函數.(1)若曲線的切線方程為,求實數的值;(2)若函數在區間上有兩個零點,求實數的取值范圍.20.(12分)已知函數f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實數a的取值范圍;(3)證明:對一切,都有成立.21.(12分)已知函數.(Ⅰ)求函數的極值;(Ⅱ)若,且,求證:.22.(10分)在平面直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線:.過點的直線:(為參數)與曲線相交于,兩點.(1)求曲線的直角坐標方程和直線的普通方程;(2)若,求實數的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據題意,是一個等比數列模型,設,由,解得,再求和.【詳解】根據題意,這是一個等比數列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數列的實際應用,還考查了建模解模的能力,屬于中檔題.2.B【解析】

設點、,并設直線的方程為,由得,將直線的方程代入韋達定理,求得,結合的面積求得的值,結合焦點弦長公式可求得.【詳解】設點、,并設直線的方程為,將直線的方程與拋物線方程聯立,消去得,由韋達定理得,,,,,,,,可得,,拋物線的準線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關鍵,考查計算能力,屬于中等題.3.A【解析】

由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以OD=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A【點睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.4.B【解析】

根據,可排除,然后采用導數,判斷原函數的單調性,可得結果.【詳解】由題可知:,所以當時,,又,令,則令,則所以函數在單調遞減在單調遞增,故選:B【點睛】本題考查函數的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調性;(5)值域,屬基礎題.5.D【解析】

由已知可得,結合向量數量積的運算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點睛】本題考查向量的數量積運算,向量垂直的應用,考查計算求解能力,屬于基礎題.6.D【解析】

根據題意分別計算出物理等級為,化學等級為的學生人數以及物理等級為,化學等級為的學生人數,結合表格中的數據進行分析,可得出合適的選項.【詳解】根據題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變為:物理化學對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.7.D【解析】

判斷,利用函數的奇偶性代入計算得到答案.【詳解】∵,∴.故選:【點睛】本題考查了利用函數的奇偶性求值,意在考查學生對于函數性質的靈活運用.8.A【解析】

利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關鍵.9.D【解析】

ABD可通過統計圖直接分析得出結論,C可通過計算中位數判斷選項是否正確.【詳解】A.由統計圖可知:2014年入境游客萬人次最少,故正確;B.由統計圖可知:后4年我國入境游客萬人次呈逐漸增加趨勢,故正確;C.入境游客萬人次的中位數應為與的平均數,大于萬次,故正確;D.由統計圖可知:前年的入境游客萬人次相比于后年的波動更大,所以對應的方差更大,故錯誤.故選:D.【點睛】本題考查統計圖表信息的讀取以及對中位數和方差的理解,難度較易.處理問題的關鍵是能通過所給統計圖,分析出對應的信息,對學生分析問題的能力有一定要求.10.C【解析】

設的最小正周期為,可得,則,再根據得,又,則可求出,進而可得.【詳解】解:設的最小正周期為,因為,所以,所以,所以,又,所以當時,,,因為,整理得,因為,,,則所以.故選:C.【點睛】本題考查三角形函數的周期性和對稱性,考查學生分析能力和計算能力,是一道難度較大的題目.11.C【解析】

根據在關于對稱的區間上概率相等的性質求解.【詳解】,,,.故選:C.【點睛】本題考查正態分布的應用.掌握正態曲線的性質是解題基礎.隨機變量服從正態分布,則.12.C【解析】

根據函數的奇偶性得,再比較的大小,根據函數的單調性可得選項.【詳解】依題意得,,當時,,因為,所以在上單調遞增,又在上單調遞增,所以在上單調遞增,,即,故選:C.【點睛】本題考查函數的奇偶性的應用、冪、指、對的大小比較,以及根據函數的單調性比較大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用復數模的運算性質,即可得答案.【詳解】由已知可得:,,解得.故答案為:.【點睛】本題考查復數模的運算性質,考查推理能力與計算能力,屬于基礎題.14.【解析】

由點坐標可確定拋物線方程,由此得到坐標和準線方程;過作準線的垂線,垂足為,根據拋物線定義可得,可知當直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點坐標,根據雙曲線定義得到實軸長,結合焦距可求得所求的離心率.【詳解】是拋物線準線上的一點拋物線方程為,準線方程為過作準線的垂線,垂足為,則設直線的傾斜角為,則當取得最小值時,最小,此時直線與拋物線相切設直線的方程為,代入得:,解得:或雙曲線的實軸長為,焦距為雙曲線的離心率故答案為:【點睛】本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標準方程的應用、雙曲線定義的應用;關鍵是能夠確定當取得最小值時,直線與拋物線相切,進而根據拋物線切線方程的求解方法求得點坐標.15.【解析】

利用展開式所有項系數的和得n=5,再利用二項式展開式的通項公式,求得展開式中的常數項.【詳解】因為的二項展開式中,所有項的系數之和為4n=1024,n=5,故的展開式的通項公式為Tr+1=C·35-r,令,解得r=4,可得常數項為T5=C·3=15,故填15.【點睛】本題主要考查了二項式定理的應用、二項式系數的性質,二項式展開式的通項公式,屬于中檔題.16.【解析】

根據滿足約束條件,畫出可行域,將目標函數,轉化為,平移直線,找到直線在軸上截距最小時的點,此時,目標函數取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標函數,轉化為,平移直線,找到直線在軸上截距最小時的點此時,目標函數取得最小值,最小值為故答案為:-1【點睛】本題主要考查線性規劃求最值,還考查了數形結合的思想方法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.A=【解析】

運用矩陣定義列出方程組求解矩陣A【詳解】由特征值、特征向量定義可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩陣【點睛】本題考查了由矩陣特征值和特征向量求矩陣,只需運用定義得出方程組即可求出結果,較為簡單18.(1);(2)20.【解析】

(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值為:0,10,20,30,1.分別求出取各個值時的概率,即可求出分布列和數學期望.【詳解】(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,所以1名顧客摸球2次摸獎停止的概率.(2)的可能取值為:0,10,20,30,1.,∴隨機變量X的分布列為:X01020301P數學期望.【點睛】本題主要考查離散型隨機變量的分布列和數學期望,屬于中檔題.19.(1);(2)或【解析】

(1)根據解析式求得導函數,設切點坐標為,結合導數的幾何意義可得方程,構造函數,并求得,由導函數求得有最小值,進而可知由唯一零點,即可代入求得的值;(2)將解析式代入,結合零點定義化簡并分離參數得,構造函數,根據題意可知直線與曲線有兩個交點;求得并令求得極值點,列出表格判斷的單調性與極值,即可確定與有兩個交點時的取值范圍.【詳解】(1)依題意,,,設切點為,,故,故,則;令,,故當時,,當時,,故當時,函數有最小值,由于,故有唯一實數根0,即,則;(2)由,得.所以“在區間上有兩個零點”等價于“直線與曲線在有兩個交點”;由于.由,解得,.當變化時,與的變化情況如下表所示:30+0極小值極大值所以在,上單調遞減,在上單調遞增.又因為,,,,故當或時,直線與曲線在上有兩個交點,即當或時,函數在區間上有兩個零點.【點睛】本題考查了導數的幾何意義應用,由切線方程求參數值,構造函數法求參數的取值范圍,函數零點的意義及綜合應用,屬于難題.20.(1)(2)((3)見證明【解析】

(1)先求函數導數,再求導函數零點,列表分析導函數符號變化規律確定函數單調性,最后根據函數單調性確定最小值取法;(2)先分離不等式,轉化為對應函數最值問題,利用導數求對應函數最值即得結果;(3)構造兩個函數,再利用兩函數最值關系進行證明.【詳解】(1)當時,單調遞減,當時,單調遞增,所以函數f(x)的最小值為f()=;(2)因為所以問題等價于在上恒成立,記則,因為,令函數f(x)在(0,1)上單調遞減;函數f(x)在(1,+)上單調遞增;即,即實數a的取值范圍為(.(3)問題等價于證明由(1)知道,令函數在(0,1)上單調遞增;函數在(1,+)上單調遞減;所以{,因此,因為兩個等號不能同時取得,所以即對一切,都有成立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論