




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是定義域為的偶函數,且滿足,當時,,則函數在區間上零點的個數為()A.9 B.10 C.18 D.202.執行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.73.已知數列的首項,且,其中,,,下列敘述正確的是()A.若是等差數列,則一定有 B.若是等比數列,則一定有C.若不是等差數列,則一定有 D.若不是等比數列,則一定有4.在三棱錐中,,,P在底面ABC內的射影D位于直線AC上,且,.設三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.5.已知函數的圖象與直線的相鄰交點間的距離為,若定義,則函數,在區間內的圖象是()A. B.C. D.6.已知函數,,且,則()A.3 B.3或7 C.5 D.5或87.已知等差數列的前n項和為,,則A.3 B.4 C.5 D.68.如圖,中,點D在BC上,,將沿AD旋轉得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關系是()A. B.C.,兩種情況都存在 D.存在某一位置使得9.為計算,設計了如圖所示的程序框圖,則空白框中應填入()A. B. C. D.10.已知雙曲線的一條漸近線經過圓的圓心,則雙曲線的離心率為()A. B. C. D.211.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且12.我國古代數學著作《九章算術》中有如下問題:“今有器中米,不知其數,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.100二、填空題:本題共4小題,每小題5分,共20分。13.直線是曲線的一條切線為自然對數的底數),則實數__________.14.的展開式中,x5的系數是_________.(用數字填寫答案)15.在中,,.若,則_________.16.在的展開式中,的系數為______用數字作答三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若曲線的切線方程為,求實數的值;(2)若函數在區間上有兩個零點,求實數的取值范圍.18.(12分)已知中心在原點的橢圓的左焦點為,與軸正半軸交點為,且.(1)求橢圓的標準方程;(2)過點作斜率為、的兩條直線分別交于異于點的兩點、.證明:當時,直線過定點.19.(12分)某調查機構為了了解某產品年產量x(噸)對價格y(千克/噸)和利潤z的影響,對近五年該產品的年產量和價格統計如下表:x12345y17.016.515.513.812.2(1)求y關于x的線性回歸方程;(2)若每噸該產品的成本為12千元,假設該產品可全部賣出,預測當年產量為多少時,年利潤w取到最大值?參考公式:20.(12分)在中,角,,的對邊分別為,,,,,且的面積為.(1)求;(2)求的周長.21.(12分)已知函數.(1)解不等式;(2)若,,,求證:.22.(10分)設函數,是函數的導數.(1)若,證明在區間上沒有零點;(2)在上恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由已知可得函數f(x)的周期與對稱軸,函數F(x)=f(x)在區間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,作出函數f(x)與g(x)的圖象如圖,數形結合即可得到答案.【詳解】函數F(x)=f(x)在區間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,由f(x)=f(2﹣x),得函數f(x)圖象關于x=1對稱,∵f(x)為偶函數,取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數周期為2.又∵當x∈[0,1]時,f(x)=x,且f(x)為偶函數,∴當x∈[﹣1,0]時,f(x)=﹣x,g(x),作出函數f(x)與g(x)的圖象如圖:由圖可知,兩函數圖象共10個交點,即函數F(x)=f(x)在區間上零點的個數為10.故選:B.【點睛】本題考查函數的零點與方程根的關系,考查數學轉化思想方法與數形結合的解題思想方法,屬于中檔題.2.C【解析】
根據程序框圖程序運算即可得.【詳解】依程序運算可得:,故選:C【點睛】本題主要考查了程序框圖的計算,解題的關鍵是理解程序框圖運行的過程.3.C【解析】
根據等差數列和等比數列的定義進行判斷即可.【詳解】A:當時,,顯然符合是等差數列,但是此時不成立,故本說法不正確;B:當時,,顯然符合是等比數列,但是此時不成立,故本說法不正確;C:當時,因此有常數,因此是等差數列,因此當不是等差數列時,一定有,故本說法正確;D:當時,若時,顯然數列是等比數列,故本說法不正確.故選:C【點睛】本題考查了等差數列和等比數列的定義,考查了推理論證能力,屬于基礎題.4.A【解析】
設的中點為O先求出外接圓的半徑,設,利用平面ABC,得,在及中利用勾股定理構造方程求得球的半徑即可【詳解】設的中點為O,因為,所以外接圓的圓心M在BO上.設此圓的半徑為r.因為,所以,解得.因為,所以.設,易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題5.A【解析】
由題知,利用求出,再根據題給定義,化簡求出的解析式,結合正弦函數和正切函數圖象判斷,即可得出答案.【詳解】根據題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數和正切函數圖象可知正確.故選:A.【點睛】本題考查三角函數中正切函數的周期和圖象,以及正弦函數的圖象,解題關鍵是對新定義的理解.6.B【解析】
根據函數的對稱軸以及函數值,可得結果.【詳解】函數,若,則的圖象關于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數的概念及性質和函數的對稱性問題,屬基礎題7.C【解析】
方法一:設等差數列的公差為,則,解得,所以.故選C.方法二:因為,所以,則.故選C.8.A【解析】
根據題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設,則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點睛】本題考查空間直線與平面所成的角的大小關系,考查三角函數的圖象和性質,意在考查學生對這些知識的理解掌握水平.9.A【解析】
根據程序框圖輸出的S的值即可得到空白框中應填入的內容.【詳解】由程序框圖的運行,可得:S=0,i=0滿足判斷框內的條件,執行循環體,a=1,S=1,i=1滿足判斷框內的條件,執行循環體,a=2×(﹣2),S=1+2×(﹣2),i=2滿足判斷框內的條件,執行循環體,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…觀察規律可知:滿足判斷框內的條件,執行循環體,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此時,應該不滿足判斷框內的條件,退出循環,輸出S的值,所以判斷框中的條件應是i<1.故選:A.【點睛】本題考查了當型循環結構,當型循環是先判斷后執行,滿足條件執行循環,不滿足條件時算法結束,屬于基礎題.10.B【解析】
求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關系求雙曲線的離心率,是基礎題.11.D【解析】
首先把三視圖轉換為幾何體,根據三視圖的長度,進一步求出個各棱長.【詳解】根據幾何體的三視圖轉換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉換,主要考查運算能力和轉換能力及思維能力,屬于基礎題.12.B【解析】
根據程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.【點睛】本題考查程序框圖,讀懂程序的功能是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據切線的斜率為,利用導數列方程,由此求得切點的坐標,進而求得切線方程,通過對比系數求得的值.【詳解】,則,所以切點為,故切線為,即,故.故答案為:【點睛】本小題主要考查利用導數求解曲線的切線方程有關問題,屬于基礎題.14.-189【解析】由二項式定理得,令r=5得x5的系數是.15.【解析】分析:首先設出相應的直角邊長,利用余弦勾股定理得到相應的斜邊長,之后應用余弦定理得到直角邊長之間的關系,從而應用正切函數的定義,對邊比臨邊,求得對應角的正切值,即可得結果.詳解:根據題意,設,則,根據,得,由勾股定理可得,根據余弦定理可得,化簡整理得,即,解得,所以,故答案是.點睛:該題考查的是有關解三角形的問題,在解題的過程中,注意分析要求對應角的正切值,需要求誰,而題中所給的條件與對應的結果之間有什么樣的連線,設出直角邊長,利用所給的角的余弦值,利用余弦定理得到相應的等量關系,求得最后的結果.16.1【解析】
利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數.【詳解】二項展開式的通項為令得的系數為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)或【解析】
(1)根據解析式求得導函數,設切點坐標為,結合導數的幾何意義可得方程,構造函數,并求得,由導函數求得有最小值,進而可知由唯一零點,即可代入求得的值;(2)將解析式代入,結合零點定義化簡并分離參數得,構造函數,根據題意可知直線與曲線有兩個交點;求得并令求得極值點,列出表格判斷的單調性與極值,即可確定與有兩個交點時的取值范圍.【詳解】(1)依題意,,,設切點為,,故,故,則;令,,故當時,,當時,,故當時,函數有最小值,由于,故有唯一實數根0,即,則;(2)由,得.所以“在區間上有兩個零點”等價于“直線與曲線在有兩個交點”;由于.由,解得,.當變化時,與的變化情況如下表所示:30+0極小值極大值所以在,上單調遞減,在上單調遞增.又因為,,,,故當或時,直線與曲線在上有兩個交點,即當或時,函數在區間上有兩個零點.【點睛】本題考查了導數的幾何意義應用,由切線方程求參數值,構造函數法求參數的取值范圍,函數零點的意義及綜合應用,屬于難題.18.(1);(2)見解析.【解析】
(1)在中,計算出的值,可得出的值,進而可得出的值,由此可得出橢圓的標準方程;(2)設點、,設直線的方程為,將該直線方程與橢圓方程聯立,列出韋達定理,根據已知條件得出,利用韋達定理和斜率公式化簡得出與所滿足的關系式,代入直線的方程,即可得出直線所過定點的坐標.【詳解】(1)在中,,,,,,,,因此,橢圓的標準方程為;(2)由題不妨設,設點,聯立,消去化簡得,且,,,,,∴代入,化簡得,化簡得,,,,直線,因此,直線過定點.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中直線過定點的問題,考查計算能力,屬于中等題.19.(1)(2)當時,年利潤最大.【解析】
(1)方法一:令,先求得關于的回歸直線方程,由此求得關于的回歸直線方程.方法二:根據回歸直線方程計算公式,計算出回歸直線方程.方法一的好處在計算的數值較小.(2)求得w的表達式,根據二次函數的性質作出預測.【詳解】(1)方法一:取,則得與的數據關系如下123457.06.55.53.82.2,,,.,,關于的線性回歸方程是即,故關于的線性回歸方程是.方法二:因為,,,,,所以,故關于的線性回歸方程是,(2)年利潤,根據二次函數的性質可知:當時,年利潤最大.【點睛】本小題主要考查回歸直線方程的求法,考查利用回歸直線方程進行預測,考查運算求解能力,屬于中檔題.20.(1)(2)【解析】
(1)利用正弦,余弦定理對式子化簡求解即可;(2)利用余弦定理以及三角形的面積,求解三角形的周長即可.【詳解】(1),由正弦定理可得:,即:,由余弦定理得.(2)∵,所以,,又,且,,的周長為【點睛】本題考查正弦定理以及余弦定理的應用,三角形的面積公式,也考查計算能力,屬于基礎題.21.(1);(2)證明見解析.【解析】
(1)分、、三種情況解不等式,即可得出該不等式的解集;(2)利用分析法可知,要證,即證,只需證明即可,因式分解后,判斷差值符號即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025企業租賃合同協議書模板下載
- 2025年廣東省茶葉采購協議合同
- 沼氣后續服務協議書
- 本地生活商家協議書
- 淘寶轉讓店鋪協議書
- 機電安裝勞務協議書
- 林木林地補償協議書
- 施工安全外包協議書
- 旅游推廣活動協議書
- 水庫除險加固協議書
- 江蘇省南京市、鹽城市2025屆高三年級5月第二次模擬考試政治試題及答案(南京鹽城二模)
- 快遞員合同協議書范本
- 公司安全事故隱患內部舉報、報告獎勵制度
- DL-T5344-2018電力光纖通信工程驗收規范
- (完整版)化工原理各章節知識點總結
- 總公司與分公司承包協議[頁]
- 簡明法語教程上冊答案
- 過敏性紫癜教案-蘇贊彩
- GB∕T 36266-2018 淋浴房玻璃(高清版)
- 外貿報關用發票、裝箱單、合同、報關單模板
- 安全聯鎖監控系統使用說明書
評論
0/150
提交評論