2022年安徽省合肥市瑤海區(qū)部分學校九年級數學第一學期期末達標測試試題含解析_第1頁
2022年安徽省合肥市瑤海區(qū)部分學校九年級數學第一學期期末達標測試試題含解析_第2頁
2022年安徽省合肥市瑤海區(qū)部分學校九年級數學第一學期期末達標測試試題含解析_第3頁
2022年安徽省合肥市瑤海區(qū)部分學校九年級數學第一學期期末達標測試試題含解析_第4頁
2022年安徽省合肥市瑤海區(qū)部分學校九年級數學第一學期期末達標測試試題含解析_第5頁
免費預覽已結束,剩余14頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,那么下列說法正確的是()A.a>0,b>0,c>0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c>02.下列各點在拋物線上的是()A. B. C. D.3.如圖,四邊形ABCD是矩形,點E在線段CB的延長線上,連接DE交AB于點F,∠AED=2∠CED,點G為DF的中點.若BE=1,AG=3,則AB的長是()A. B.2 C. D.4.下列說法:四邊相等的四邊形一定是菱形順次連接矩形各邊中點形成的四邊形一定是正方形對角線相等的四邊形一定是矩形經過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分其中正確的有個.A.4 B.3 C.2 D.15.如圖所示,是的中線,是上一點,,的延長線交于,()A. B. C. D.6.如果一個正多邊形的中心角為60°,那么這個正多邊形的邊數是()A.4 B.5 C.6 D.77.下列所給的汽車標志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.8.有一個正方體,6個面上分別標有1~6這6個整數,投擲這個正方體一次,則出現(xiàn)向上一面的數字是奇數的概率為()A. B. C. D.9.如圖,E為矩形ABCD的CD邊延長線上一點,BE交AD于G,AF⊥BE于F,圖中相似三角形的對數是()A.5 B.7 C.8 D.1010.下列說法正確的是()A.經過三點可以做一個圓 B.平分弦的直徑垂直于這條弦C.等弧所對的圓心角相等 D.三角形的外心到三邊的距離相等二、填空題(每小題3分,共24分)11.如圖,∠C=∠E=90°,AC=3,BC=4,AE=2,則AD=_________.12.如圖,在平面直角坐標系中,反比例函數(x>0)與正比例函數y=kx、(k>1)的圖象分別交于點A、B,若∠AOB=45°,則△AOB的面積是________.13.如圖,是正三角形,D、E分別是BC、AC上的點,當=_______時,~.14.二次函數的最大值是________.15.如圖,在中,,,,是上一點,,過點的直線將分成兩部分,使其所分成的三角形與相似,若直線與另一邊的交點為點,則__________.16.拋物線y=(m2-2)x2-4mx+n的對稱軸是x=2,且它的最高點在直線y=x+2上,則m=________,n=________.17.已知二次函數y=ax1+bx+c(a>0)圖象的對稱軸為直線x=1,且經過點(﹣1,y1),(1,y1),則y1_____y1.(填“>”“<”或“=”)18.某公司快遞員甲勻速騎車前往某小區(qū)送物件,出發(fā)幾分鐘后,快遞員乙發(fā)現(xiàn)甲的手機落在公司,無法聯(lián)系,于是乙勻速騎車去追趕甲.乙剛出發(fā)2分鐘時,甲也發(fā)現(xiàn)自己手機落在公司,立刻按原路原速騎車回公司,2分鐘后甲遇到乙,乙把手機給甲后立即原路原速返回公司,甲繼續(xù)原路原速趕往某小區(qū)送物件,甲乙兩人相距的路程y(米)與甲出發(fā)的時間x(分鐘)之間的關系如圖所示(乙給甲手機的時間忽略不計).則乙回到公司時,甲距公司的路程是______米.三、解答題(共66分)19.(10分)如圖,在中,,為邊上的中點,交于點,.(1)求的值;(2)若,求的值.20.(6分)蘇北五市聯(lián)合通過網絡投票選出了一批“最有孝心的美少年”.根據各市的入選結果制作出如下統(tǒng)計表,后來發(fā)現(xiàn),統(tǒng)計表中前三行的所有數據都是正確的,后兩行中有一個數據是錯誤的.請回答下列問題:(1)統(tǒng)計表________,________;(2)統(tǒng)計表后三行中哪一個數據是錯誤的?該數據的正確值是多少?(3)組委會決定從來自宿遷市的4位“最有孝心的美少年”中,任選兩位作為蘇北五市形象代言人,、是宿遷市“最有孝心的美少年”中的兩位,問、同時入選的概率是多少?并請畫出樹狀圖或列出表格.區(qū)域頻數頻率宿遷4a連云港70.175淮安0.2徐州100.25鹽城120.27521.(6分)假期期間,甲、乙兩位同學到某影城看電影,影城有《我和我的祖國》(記為)、《中國機長》(記為)、《攀登者》(記為)三部電影,甲、乙兩位同學分別從中任選一部觀看,每部被選中的可能性相同.用樹狀圖或列表法求甲、乙兩位同學選擇同一部電影的概率.22.(8分)超速行駛是引發(fā)交通事故的主要原因.上周末,小明和三位同學嘗試用自己所學的知識檢測車速,如圖,觀測點設在到縣城城南大道的距離為米的點處.這時,一輛出租車由西向東勻速行駛,測得此車從處行駛到處所用的時間為秒,且,.求、之間的路程;請判斷此出租車是否超過了城南大道每小時千米的限制速度?23.(8分)某游樂園有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向為x軸,噴水池中心為原點建立直角坐標系.(1)求水柱所在拋物線(第一象限部分)的函數表達式;(2)王師傅在噴水池內維修設備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心多少米以內?(3)經檢修評估,游樂園決定對噴水設施做如下設計改進:在噴出水柱的形狀不變的前提下,把水池的直徑擴大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請?zhí)骄繑U建改造后噴水池水柱的最大高度.24.(8分)甲口袋中裝有2個小球,它們分別標有數字1、2,乙口袋中裝有3個小球,它們分別標有數字3、4、現(xiàn)分別從甲、乙兩個口袋中隨機地各取出1個小球,請你用列舉法畫樹狀圖或列表的方法求取出的兩個小球上的數字之和為5的概率.25.(10分)某水果商場經銷一種高檔水果,原價每千克25元,連續(xù)兩次漲價后每千克水果現(xiàn)在的價格為36元.(1)若每次漲價的百分率相同.求每次漲價的百分率;(2)若進價不變,按現(xiàn)價售出,每千克可獲利15元,但該水果出現(xiàn)滯銷,商場決定降價m元出售,同時把降價的幅度m控制在的范圍,經市場調查發(fā)現(xiàn),每天銷售量(千克)與降價的幅度m(元)成正比例,且當時,.求與m的函數解析式;(3)在(2)的條件下,若商場每天銷售該水果盈利元,為確保每天盈利最大,該水果每千克應降價多少元?26.(10分)化簡分式,并從﹣1≤x≤3中選一個你認為合適的整數x代入求值.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】利用拋物線開口方向確定a的符號,利用對稱軸方程可確定b的符號,利用拋物線與y軸的交點位置可確定c的符號.【詳解】∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側,∴x=﹣>0,∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,故選B.【點睛】本題考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0),二次項系數a決定拋物線的開口方向和大小:當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c);拋物線與x軸交點個數由△決定:△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.2、A【分析】確定點是否在拋物線上,分別把x=0,3,-2,代入中計算出對應的函數值,再進行判斷即可.【詳解】解:當時,,當時,,當時,,當時,,所以點在拋物線上.故選:.3、B【分析】根據直角三角形斜邊上的中線等于斜邊的一半可得AG=DG,進而得到得∠ADG=∠DAG,再結合兩直線平行,內錯角相等可得∠ADG=∠CED,再根據三角形外角定理∠AGE=2∠ADG,從而得到∠AED=∠AGE,再得到AE=AG,然后利用勾股定理列式計算即可得解.【詳解】解:∵四邊形ABCD是矩形,點G是DF的中點,∴AG=DG,∴∠ADG=∠DAG,∵AD∥BC,∴∠ADG=∠CED,∴∠AGE=∠ADG+∠DAG=2∠CED,∵∠AED=2∠CED,∴∠AED=∠AGE,∴AE=AG=3,在Rt△ABE中,,故選:B.【點睛】本題考查了矩形的性質,等邊對等角的性質,等角對等邊的性質,以及勾股定理的應用,求出AE=AG是解題的關鍵.4、C【詳解】∵四邊相等的四邊形一定是菱形,∴①正確;∵順次連接矩形各邊中點形成的四邊形一定是菱形,∴②錯誤;∵對角線相等的平行四邊形才是矩形,∴③錯誤;∵經過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分,∴④正確;其中正確的有2個,故選C.考點:中點四邊形;平行四邊形的性質;菱形的判定;矩形的判定與性質;正方形的判定.5、D【分析】作DH∥BF交AC于H,根據三角形中位線定理得到FH=HC,根據平行線分線段成比例定理得到,據此計算得到答案.【詳解】解:作DH∥BF交AC于H,

∵AD是△ABC的中線,

∴BD=DC,

∴FH=HC,∴FC=2FH,

∵DH∥BF,,,∴AF:FC=1:6,∴AF:AC=1:7,

故選:D.【點睛】本題考查平行線分線段成比例定理,作出平行輔助線,靈活運用定理、找準比例關系是解題的關鍵.6、C【解析】試題解析:這個多邊形的邊數為:故選C.7、B【解析】分析:根據軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合.8、A【解析】投擲這個正方體會出現(xiàn)1到6共6個數字,每個數字出現(xiàn)的機會相同,即有6個可能結果,而這6個數中有1,3,5三個奇數,則有3種可能,根據概率公式即可得出答案.【詳解】解:∵在1~6這6個整數中有1,3,5三個奇數,∴當投擲這個正方體一次,則出現(xiàn)向上一面的數字為奇數的概率是:=.故選:A.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.9、D【解析】試題解析:∵矩形ABCD∴AD∥BC,AB∥CD,∠DAB=∠ADE=∴△EDG∽△ECB∽△BAG∵AF⊥BE∴∠AFG=∠BFA=∠DAB=∠ADE=∵∠AGF=∠BGA,∠ABF=∠GBA∴△GAF∽△GBA∽△ABF∴△EDG∽△ECB∽△BAG∽△AFG∽△BFA∴共有10對故選D.10、C【解析】根據確定圓的條件、垂徑定理的推論、圓心角、弧、弦的關系、三角形的外心的知識進行判斷即可.【詳解】解:A、經過不在同一直線上的三點可以作一個圓,A錯誤;B、平分弦(不是直徑)的直徑垂直于這條弦,B錯誤;C、等弧所對的圓心角相等,C正確;D、三角形的外心到各頂點的距離相等,D錯誤;故選:C.【點睛】本題考查的是圓心角、弧、弦的關系、確定圓的條件、垂徑定理的推論和三角形外心的知識,掌握相關定理并靈活運用是解題的關鍵.二、填空題(每小題3分,共24分)11、.【解析】試題分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根據相似三角形的對應邊的比相等就可求出AD的長.試題解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=∴考點:1.相似三角形的判定與性質;2.勾股定理.12、2【解析】作BD⊥x軸,AC⊥y軸,OH⊥AB(如圖),設A(x1,y1),B(x2,y2),根據反比例函數k的幾何意義得x1y1=x2y2=2;將反比例函數分別與y=kx,y=聯(lián)立,解得x1=,x2=,從而得x1x2=2,所以y1=x2,y2=x1,根據SAS得△ACO≌△BDO,由全等三角形性質得AO=BO,∠AOC=∠BOD,由垂直定義和已知條件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根據AAS得△ACO≌△BDO≌△AHO≌△BHO,根據三角形面積公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+x2y2=×2+×2=2.【詳解】如圖:作BD⊥x軸,AC⊥y軸,OH⊥AB,設A(x1,y1),B(x2,y2),∵A、B在反比例函數上,∴x1y1=x2y2=2,∵,解得:x1=,又∵,解得:x2=,∴x1x2=×=2,∴y1=x2,y2=x1,即OC=OD,AC=BD,∵BD⊥x軸,AC⊥y軸,∴∠ACO=∠BDO=90°,∴△ACO≌△BDO(SAS),∴AO=BO,∠AOC=∠BOD,又∵∠AOB=45°,OH⊥AB,∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°,∴△ACO≌△BDO≌△AHO≌△BHO,∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+x2y2=×2+×2=2,故答案為:2.【點睛】本題考查了反比例函數系數k的幾何意義,反比例函數與一次函數的交點問題,全等三角形的判定與性質等,正確添加輔助線是解題的關鍵.13、60°【分析】由△ABC是正三角形可得∠B=60°,又由△ABD∽△DCE,根據相似三角形的對應角相等,即可得∠EDC=∠BAD,然后利用三角形外角的性質,即可求得∠ADE的度數【詳解】∵△ABC是正三角形,∴∠B=60°,∵△ABD∽△DCE,∴∠EDC=∠BAD,∵∠ADC是△ABD的外角,∴∠ADE+∠EDC=∠B+∠BAD,∴∠ADE=∠B=60°,【點睛】此題考查了相似三角形的判定與性質、等邊三角形的性質以及三角形外角的性質.此題難度適中.14、1【分析】題目所給形式是二次函數的頂點式,易知其頂點坐標是(5,1),也就是當x=5時,函數有最大值1.【詳解】解:∵,∴此函數的頂點坐標是(5,1).即當x=5時,函數有最大值1.故答案是:1.【點睛】本題考查了二次函數的最值,解題關鍵是掌握二次函數頂點式,并會根據頂點式求最值.15、1,,【分析】根據P的不同位置,分三種情況討論,即可解答.【詳解】解:如圖:當DP∥AB時∴△DCP∽△BCA∴即,解得DP=1如圖:當P在AB上,即DP∥AC∴△DCP∽△BCA∴即,解得DP=如圖,當∠CPD=∠B,且∠C=∠C時,∴△DCP∽△ACB∴即,解得DP=故答案為1,,.【點睛】本題考查了相似三角形的判定和性質,掌握分類討論思想并全部找到不同位置的P點是解答本題的關鍵.16、-1-1【分析】由對稱軸可求得m的值,且可求得頂點坐標,再把頂點坐標代入直線解析式可求得n.【詳解】∵拋物線y=(m2?2)x2?4mx+n的對稱軸是x=2,

∴?=2,解得m=2或m=?1,

∵拋物線有最高點,

∴m2?2<0,

∴m=?1,

∴拋物線解析式為y=?x2+4x+n=?(x?2)2+4+n,

∴頂點坐標為(2,4+n),

∵最高點在直線y=x+2上,

∴4+n=1+2,解得n=?1,

故答案為?1,?1.【點睛】本題考查二次函數的性質、一次函數圖象上點的坐標特征和二次函數的最值,解題的關鍵是掌握二次函數的性質、一次函數圖象上點的坐標特征.17、>【分析】根據二次函數y=ax1+bx+c(a>0)圖象的對稱軸為直線x=1,且經過點(﹣1,y1),(1,y1)和二次函數的性質可以判斷y1和y1的大小關系.【詳解】解:∵二次函數y=ax1+bx+c(a>0)圖象的對稱軸為直線x=1,∴當x>1時,y隨x的增大而增大,當x<1時,y隨x的增大而減小,∵該函數經過點(﹣1,y1),(1,y1),|﹣1﹣1|=1,|1﹣1|=1,∴y1>y1,故答案為:>.【點睛】本題考查了二次函數的增減性問題,掌握二次函數的性質是解題的關鍵.18、6000【分析】根據函數圖象和題意可以分別求得甲乙的速度和乙從與甲相遇到返回公司用的時間,從而可以求得當乙回到公司時,甲距公司的路程.【詳解】解:由題意可得,甲的速度為:4000÷(12-2-2)=500米/分,乙的速度為:=1000米/分,乙從與甲相遇到返回公司用的時間為4分鐘,則乙回到公司時,甲距公司的路程是:500×(12-2)-500×2+500×4=6000(米),故答案為6000.【點睛】本題考查一次函數的應用,解答本題的關鍵是明確題意,利用數形結合的思想解答.三、解答題(共66分)19、(1)(2)【分析】(1)根據題意證出∠B=∠ADE,進而設出DE和AD的值,再結合勾股定理求出AE的值即可得出答案;(2)根據斜中定理求出AD和AB的值,結合∠B和∠AED的sin值求出AC和AE的值,相減即可得出答案.【詳解】(1)∵,∴.又∵,∴.設,則.在中,,則.(2)∵為斜邊上的中點,∴,∴.則,,∴.【點睛】本題考查的是解直角三角形,難度適中,需要熟練掌握直角三角形中的相關性質與定理.20、(1)1.1,8;(2)鹽城市對應頻數12這個數據是錯誤的,該數據的正確值是11;(3)【分析】(1)利用連云港的頻數及頻率求出總數,再根據a的頻數、b的頻率利用公式即可求出答案;(2)計算各組的頻率和是否得1,根據頻率計算各組頻數是否正確,由此即可判斷出錯誤的數據;(3)設來自宿遷的4位“最有孝心的美少年”為、、、,列表表示所有可能的情況,再根據概率公式計算即可.【詳解】(1)∵連云港市頻數為7,頻率為1.175,∴數據總數為,∴,.故答案為1.1,8;(2)∵,∴各組頻率正確,∵,∴鹽城市對應頻數12這個數據是錯誤的,該數據的正確值是11;(3)設來自宿遷的4位“最有孝心的美少年”為、、、,列表如下:∵共有12種等可能的結果,、同時入選的有2種情況,∴、同時入選的概率是:.【點睛】此題考查統(tǒng)計計算能力,正確理解頻數分布表,依據表格得到相應的信息,能正確計算總數,部分的數量,部分的頻率,利用列表法求事件的概率.21、,見解析【分析】列表法展示所有等可能的結果數,找出甲、乙選擇同1部電影的結果數,然后利用概率公式求解.【詳解】解:列表如下:由表可知,共有9種等可能結果,其中選擇同一部電影的結果為3種,∴(他們選擇同一部電影).【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.22、(米);此車超過了每小時千米的限制速度.【分析】(1)利用三角函數在兩個直角三角形中分別計算出BO、AO的長,即可算出AB的長;(2)利用路程÷時間=速度,計算出出租車的速度,再把60千米/時化為米/秒,再進行比較即可.【詳解】由題意知:米,,,在直角三角形中,∵,∴米,在直角三角形中,∵,∴米,∴(米);∵從處行駛到處所用的時間為秒,∴速度為米/秒,∵千米/時米/秒,而,∴此車超過了每小時千米的限制速度.【點睛】此題是解直角三角形的應用,主要考查了銳角三角函數,從復雜的實際問題中整理出直角三角形并求解是解決此類題目的關鍵.23、(1)水柱所在拋物線(第一象限部分)的函數表達式為y=﹣(x﹣3)2+5(0<x<8);(2)為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心7米以內;(3)擴建改造后噴水池水柱的最大高度為米.【解析】分析:(1)根據頂點坐標可設二次函數的頂點式,代入點(8,0),求出a值,此題得解;(2)利用二次函數圖象上點的坐標特征,求出當y=1.8時x的值,由此即可得出結論;(3)利用二次函數圖象上點的坐標特征可求出拋物線與y軸的交點坐標,由拋物線的形狀不變可設改造后水柱所在拋物線(第一象限部分)的函數表達式為y=﹣x2+bx+,代入點(16,0)可求出b值,再利用配方法將二次函數表達式變形為頂點式,即可得出結論.詳解:(1)設水柱所在拋物線(第一象限部分)的函數表達式為y=a(x﹣3)2+5(a≠0),將(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在拋物線(第一象限部分)的函數表達

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論