遼寧省撫順市五十中學2022年數學九年級第一學期期末學業質量監測模擬試題含解析_第1頁
遼寧省撫順市五十中學2022年數學九年級第一學期期末學業質量監測模擬試題含解析_第2頁
遼寧省撫順市五十中學2022年數學九年級第一學期期末學業質量監測模擬試題含解析_第3頁
遼寧省撫順市五十中學2022年數學九年級第一學期期末學業質量監測模擬試題含解析_第4頁
遼寧省撫順市五十中學2022年數學九年級第一學期期末學業質量監測模擬試題含解析_第5頁
免費預覽已結束,剩余20頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.某數學興趣小組開展動手操作活動,設計了如圖所示的三種圖形,現計劃用鐵絲按照圖形制作相應的造型,則所用鐵絲的長度關系是()A.甲種方案所用鐵絲最長 B.乙種方案所用鐵絲最長C.丙種方案所用鐵絲最長 D.三種方案所用鐵絲一樣長:學*科*網]2.用配方法解方程x2+3=4x,配方后的方程變為()A.(x-2)2=7 B.(x+2)2=1C.(x-2)2=1 D.(x+2)2=23.某公司今年4月的營業額為2500萬元,按計劃第二季度的總營業額要達到9100萬元,設該公司5、6兩月的營業額的月平均增長率為x.根據題意列方程,則下列方程正確的是()A.B.C.D.4.如圖,要證明平行四邊形ABCD為正方形,那么我們需要在四邊形ABCD是平行四邊形的基礎上,進一步證明()A.AB=AD且AC⊥BD B.AB=AD且AC=BD C.∠A=∠B且AC=BD D.AC和BD互相垂直平分5.張華同學的身高為米,某一時刻他在陽光下的影長為米,同時與他鄰近的一棵樹的影長為米,則這棵樹的高為()A.米 B.米 C.米 D.米6.一個鐵制零件(正方體中間挖去一個圓柱形孔)如圖放置,它的左視圖是()A.B.C.D.7.下列命題中正確的是()A.對角線相等的四邊形是矩形B.對角線互相垂直的四邊形是菱形C.對角線互相垂直平分且相等的四邊形是正方形D.一組對邊相等,另一組對邊平行的四邊形是平行四邊形8.如圖,AB為⊙O的直徑,C、D是⊙O上的兩點,,弧AD=弧CD.則∠DAC等于()A. B. C. D.9.某個密碼鎖的密碼由三個數字組成,每個數字都是0-9這十個數字中的一個,只有當三個數字與所設定的密碼及順序完全相同,才能將鎖打開,如果僅忘記了所設密碼的最后那個數字,那么一次就能打開該密碼的概率是()A.110 B.19 C.110.如圖,AB,AM,BN分別是⊙O的切線,切點分別為P,M,N.若MN∥AB,∠A=60°,AB=6,則⊙O的半徑是()A. B.3 C. D.二、填空題(每小題3分,共24分)11.如圖,,分別是邊,上的點,,若,,,則______.12.若,則=______.13.如圖,在△ABC中,∠B=45°,AB=4,BC=6,則△ABC的面積是__________.14.在一個不透明的口袋中裝有5個紅球和3個白球,他們除顏色外其他完全相同,任意摸出一個球是白球的概率為________.15.已知:二次函數y=ax2+bx+c圖象上部分點的橫坐標x與縱坐標y的對應值如表格所示,那么它的圖象與x軸的另一個交點坐標是_____.x…﹣1012…y…0343…16.計算:__________.17.圖1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉動點A離地面BD的高度AH為3.4m.當起重臂AC長度為9m,張角∠HAC為118°時,操作平臺C離地面的高度為_______米.(結果保留小數點后一位:參考數據:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)18.二次函數y=﹣x2+bx+c的部分圖象如圖所示,對稱軸是直線x=﹣1,則關于x的一元二次方程﹣x2+bx+c=0的根為_____.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為A(1,1),B(4,0),C(4,4).(1)按下列要求作圖:①將△ABC向左平移4個單位,得到△A1B1C1;②將△A1B1C1繞點B1逆時針旋轉90°,得到△A1B1C1.(1)求點C1在旋轉過程中所經過的路徑長.20.(6分)解下列方程(1);(2).21.(6分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+6經過點A(﹣3,0)和點B(2,0),直線y=h(h為常數,且0<h<6)與BC交于點D,與y軸交于點E,與AC交于點F.(1)求拋物線的解析式;(2)連接AE,求h為何值時,△AEF的面積最大.(3)已知一定點M(﹣2,0),問:是否存在這樣的直線y=h,使△BDM是等腰三角形?若存在,請求出h的值和點D的坐標;若不存在,請說明理由.22.(8分)如圖,△ABC中,AB=AC=2,∠BAC=120°,D為BC邊上的點,將DA繞D點逆時針旋轉120°得到DE.(1)如圖1,若AD=DC,則BE的長為,BE2+CD2與AD2的數量關系為;(2)如圖2,點D為BC邊山任意一點,線段BE、CD、AD是否依然滿足(1)中的關系,試證明;(3)M為線段BC上的點,BM=1,經過B、E、D三點的圓最小時,記D點為D1,當D點從D1處運動到M處時,E點經過的路徑長為.23.(8分)如圖,在中,,點是邊上一點,連接,以為邊作等邊.如圖1,若求等邊的邊長;如圖2,點在邊上移動過程中,連接,取的中點,連接,過點作于點.①求證:;②如圖3,將沿翻折得,連接,直接寫出的最小值.24.(8分)如圖,BM是以AB為直徑的⊙O的切線,B為切點,BC平分∠ABM,弦CD交AB于點E,DE=OE.(1)求證:△ACB是等腰直角三角形;(2)求證:OA2=OE?DC:(3)求tan∠ACD的值.25.(10分)如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點.(1)求拋物線的解析式和直線AC的解析式;(2)請在y軸上找一點M,使△BDM的周長最小,求出點M的坐標;(3)試探究:在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.26.(10分)某汽車銷售公司去年12月份銷售新上市的一種新型低能耗汽車200輛,由于該型汽車的優越的經濟適用性,銷量快速上升,若該型汽車每輛的盈利為5萬元,則平均每天可售8輛,為了盡量減少庫存,汽車銷售公司決定采取適當的降價措施,經調查發現,每輛汽車每降5000元,公司平均每天可多售出2輛,若汽車銷售公司每天要獲利48萬元,每輛車需降價多少?

參考答案一、選擇題(每小題3分,共30分)1、D【解析】試題分析:解:由圖形可得出:甲所用鐵絲的長度為:2a+2b,乙所用鐵絲的長度為:2a+2b,丙所用鐵絲的長度為:2a+2b,故三種方案所用鐵絲一樣長.故選D.考點:生活中的平移現象2、C【分析】將方程常數項移到右邊,未知項移到左邊,然后兩邊都加上4,左邊化為完全平方式,右邊合并即可得到結果.【詳解】x2+3=4x,整理得:x2-4x=-3,配方得:x2-4x+4=4-3,即(x-2)2=1.故選C.【點睛】此題考查了解一元二次方程-配方法,利用此方法解方程時,首先將方程常數項移到右邊,未知項移到左邊,二次項系數化為1,然后方程兩邊都加上一次項系數一半的平方,左邊化為完全平方式,開方即可求出解.3、D【分析】分別表示出5月,6月的營業額進而得出等式即可.【詳解】解:設該公司5、6兩月的營業額的月平均增長率為x.根據題意列方程得:.故選D.【點睛】考查了由實際問題抽象出一元二次方程,正確理解題意是解題關鍵.4、B【解析】解:A.根據有一組鄰邊相等的平行四邊形是菱形,或者對角線互相垂直的平行四邊形是菱形,所以不能判斷平行四邊形ABCD是正方形;B.根據鄰邊相等的平行四邊形是菱形,對角線相等的平行四邊形為矩形,所以能判斷四邊形ABCD是正方形;C.根據一組鄰角相等的平行四邊形是矩形,對角線相等的平行四邊形也是矩形,即只能證明四邊形ABCD是矩形,不能判斷四邊形ABCD是正方形;D.根據對角線互相垂直的平行四邊形是菱形,對角線互相平分的四邊形是平行四邊形,所以不能判斷四邊形ABCD是正方形.故選B.5、A【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體、影子、經過物體頂部的太陽光線三者構成的兩個直角三角形相似.【詳解】解:據相同時刻的物高與影長成比例,

設這棵樹的高度為xm,

則可列比例為,,解得,x=3.1.

故選:A.【點睛】本題主要考查同一時刻物高和影長成正比,考查利用所學知識解決實際問題的能力.6、C【解析】試題解析:從左邊看一個正方形被分成三部分,兩條分式是虛線,故C正確;故選C.考點:簡單幾何體的三視圖.7、C【解析】試題分析:A、對角線相等的平行四邊形是矩形,所以A選項錯誤;B、對角線互相垂直的平行四邊形是菱形,所以B選項錯誤;C、對角線互相垂直平分且相等的四邊形是正方形,所以C選項正確;D、一組對邊相等且平行的四邊形是平行四邊形,所以D選項錯誤.故選C.考點:命題與定理.8、C【分析】利用圓周角定理得到,則,再根據圓內接四邊形的對角互補得到,又根據弧AD=弧CD得到,然后根據等腰三角形的性質和三角形的內角和定理可得出的度數.【詳解】∵AB為⊙O的直徑∵弧AD=弧CD故選:C.【點睛】本題考查了圓周角定理、圓內接四邊形的性質、等腰三角形的性質等知識點,利用圓內接四邊形的性質求出的度數是解題關鍵.9、A【解析】試題分析:根據題意可知總共有10種等可能的結果,一次就能打開該密碼的結果只有1種,所以P(一次就能打該密碼)=,故答案選A.考點:概率.10、D【分析】根據題意可判斷四邊形ABNM為梯形,再由切線的性質可推出∠ABN=60°,從而判定△APO≌△BPO,可得AP=BP=3,在直角△APO中,利用三角函數可解出半徑的值.【詳解】解:連接OP,OM,OA,OB,ON∵AB,AM,BN分別和⊙O相切,∴∠AMO=90°,∠APO=90°,∵MN∥AB,∠A=60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO和△BPO中,,△APO≌△BPO(AAS),∴AP=AB=3,∴tan∠OAP=tan30°==,∴OP=,即半徑為.故選D.【點睛】本題考查了切線的性質,切線長定理,解直角三角形,全等三角形的判定和性質,關鍵是說明點P是AB中點,難度不大.二、填空題(每小題3分,共24分)11、1【分析】證明△ADE∽△ACB,根據相似三角形的性質列出比例式,計算即可.【詳解】解:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴,即,解得,AE=1,故答案為:1.【點睛】本題考查的是相似三角形的判定和性質,掌握相似三角形的判定定理和性質定理是解題的關鍵.12、【詳解】設x=2k.y=3k,(k≠0)∴原式=.故答案是:13、6【分析】作輔助線AD⊥BC構造直角三角形ABD,利用銳角∠B的正弦函數的定義求出三角形ABC底邊BC上的高AD的長度,然后根據三角形的面積公式來求△ABC的面積即可.【詳解】過A作AD垂直BC于D,在Rt△ABD中,∵sinB=,∴AD=AB?sinB=4?sin45°=4×=,∴S△ABC=BC?AD=×6×=,故答案為:【點睛】本題考查了解直角三角形.解答該題時,通過作輔助線△ABC底邊BC上的高線AD構造直角三角形,利用銳角三角函數的定義在直角三角形中求得AD的長度的.14、【詳解】解:∵在一個不透明的口袋中裝有5個紅球和3個白球,∴任意從口袋中摸出一個球來,P(摸到白球)==.15、(3,0).【解析】分析:根據(0,3)、(2,3)兩點求得對稱軸,再利用對稱性解答即可.詳解:∵拋物線y=ax2+bx+c經過(0,3)、(2,3)兩點,∴對稱軸x==1;點(﹣1,0)關于對稱軸對稱點為(3,0),因此它的圖象與x軸的另一個交點坐標是(3,0).故答案為(3,0).點睛:本題考查了拋物線與x軸的交點,關鍵是熟練掌握二次函數的對稱性.16、【分析】本題涉及零指數冪、負整數指數冪、二次根式化簡三個考點,在計算時需要針對每個考點分別進行計算,然后再進行加減運算即可.【詳解】3-4-1=-2.故答案為:-2.【點睛】本題考查的是實數的運算能力,注意要正確掌握運算順序及運算法則.17、7.6【分析】作于,于,如圖2,易得四邊形為矩形,則,,再計算出,在中利用正弦可計算出,然后計算即可.【詳解】解:作于E,于,如圖2,∴四邊形為矩形,∴,,∴,∴在中,,∴,∴,∴操作平臺離地面的高度為.故答案是:.【點睛】本題考查了解直角三角形的應用:先將實際問題抽象為數學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題),然后利用三角函數的定義進行幾何計算.18、x1=1,x2=﹣1.【分析】根據二次函數的性質和函數的圖象,可以得到該函數圖象與x軸的另一個交點,從而可以得到一元二次方程-x2+bx+c=0的解,本題得以解決.【詳解】由圖象可得,拋物線y=﹣x2+bx+c與x軸的一個交點為(﹣1,0),對稱軸是直線x=﹣1,則拋物線與x軸的另一個交點為(1,0),即當y=0時,0=﹣x2+bx+c,此時方程的解是x1=1,x2=﹣1,故答案為:x1=1,x2=﹣1.【點睛】本題考查拋物線與x軸的交點、二次函數的性質,解答本題的關鍵是明確題意,利用二次函數的性質解答.三、解答題(共66分)19、(1)①見解析;②見解析;(1)1π.【分析】(1)①利用點平移的坐標規律,分別畫出點A、B、C的對應點A1、B1、C1的坐標,然后描點可得△A1B1C1;②利用網格特點和旋轉的性質,分別畫出點A1、B1、C1的對應點A1、B1、C1即可;(1)根據弧長公式計算.【詳解】(1)①如圖,△A1B1C1為所作;②如圖,△A1B1C1為所作;(1)點C1在旋轉過程中所經過的路徑長=【點睛】本題考查了作圖﹣旋轉變換:根據旋轉的性質可知,對應角都相等,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.也考查了平移的性質.20、(1),;(2),.【分析】(1)利用因式分解法解方程;(2)先變形為(2x-1)2-(x-3)2=0,然后利用因式分解法解方程.【詳解】(1),或,所以,;(2),,或,所以,.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數學轉化思想).21、(1)y=﹣x2﹣x+1;(2)當h=3時,△AEF的面積最大,最大面積是.(3)存在,當h=時,點D的坐標為(,);當h=時,點D的坐標為(,).【分析】(1)利用待定系數法即可解決問題.(2)由題意可得點E的坐標為(0,h),點F的坐標為(,h),根據S△AEF=?OE?FE=?h?=﹣(h﹣3)2+.利用二次函數的性質即可解決問題.(3)存在.分兩種情形情形,分別列出方程即可解決問題.【詳解】解:如圖:(1)∵拋物線y=ax2+bx+1經過點A(﹣3,0)和點B(2,0),∴,解得:.∴拋物線的解析式為y=﹣x2﹣x+1.(2)∵把x=0代入y=﹣x2﹣x+1,得y=1,∴點C的坐標為(0,1),設經過點A和點C的直線的解析式為y=mx+n,則,解得,∴經過點A和點C的直線的解析式為:y=2x+1,∵點E在直線y=h上,∴點E的坐標為(0,h),∴OE=h,∵點F在直線y=h上,∴點F的縱坐標為h,把y=h代入y=2x+1,得h=2x+1,解得x=,∴點F的坐標為(,h),∴EF=.∴S△AEF=?OE?FE=?h?=﹣(h﹣3)2+,∵﹣<0且0<h<1,∴當h=3時,△AEF的面積最大,最大面積是.(3)存在符合題意的直線y=h.∵B(2,0),C(0,1),∴直線BC的解析式為y=﹣3x+1,設D(m,﹣3m+1).①當BM=BD時,(m﹣2)2+(﹣3m+1)2=42,解得m=或(舍棄),∴D(,),此時h=.②當MD=BM時,(m+2)2+(﹣3m+1)2=42,解得m=或2(舍棄),∴D(,),此時h=.∵綜上所述,存在這樣的直線y=或y=,使△BDM是等腰三角形,當h=時,點D的坐標為(,);當h=時,點D的坐標為(,).【點睛】此題考查了待定系數法求函數的解析式、二次函數的性質、等腰三角形的性質、勾股定理一次函數的應用等知識,此題難度較大,注意掌握方程思想、分類討論思想與數形結合思想的應用.22、(1)1;BE1+CD1=4AD1;(1)能滿足(1)中的結論,見解析;(3)1【分析】(1)依據旋轉性質可得:DE=DA=CD,∠BDE=∠ADB=60°,再證明:△BDE≌△BDA,利用勾股定理可得結論;(1)將△ACD繞點A順時針旋轉110°得到△ABD′,再證明:∠D′BE=∠D′AE=90°,利用勾股定理即可證明結論仍然成立;(3)從(1)中發現:∠CBE=30°,即:點D運動路徑是線段;分別求出點D位于D1時和點D運動到M時,對應的BE長度即可得到結論.【詳解】解:(1)如圖1,∵AB=AC,∠BAC=110°,∴∠ABC=∠ACB=30°,∵AD=DC∴∠CAD=∠ACB=30°,∠ADB=∠CAD+∠ACB=60°,∴∠BAD=90°,由旋轉得:DE=DA=CD,∠BDE=∠ADB=60°∴△BDE≌△BDA(SAS)∴∠BED=∠BAD=90°,BE=AB=∴BE1+CD1=BE1+DE1=BD1∵=cos∠ADB=cos60°=∴BD=1AD∴BE1+CD1=4AD1;故答案為:;BE1+CD1=4AD1;(1)能滿足(1)中的結論.如圖1,將△ACD繞點A順時針旋轉110°得到△ABD′,使AC與AB重合,∵∠DAD′=110°,∠BAD′=∠CAD,∠ABD′=∠ACB=30°,AD′=AD=DE,∠DAE=∠AED=30°,BD′=CD,∠AD′B=∠ADC∴∠D′AE=90°∵∠ADB+∠ADC=180°∴∠ADB+∠AD′B=180°∴A、D、B、D′四點共圓,同理可證:A、B、E、D四點共圓,A、E、B、D′四點共圓;∴∠D′BE=90°∴BE1+BD′1=D′E1∵在△AD′E中,∠AED′=30°,∠EAD′=90°∴D′E=1AD′=1AD∴BE1+BD′1=(1AD)1=4AD1∴BE1+CD1=4AD1.(3)由(1)知:經過B、E、D三點的圓必定經過D′、A,且該圓以D′E為直徑,該圓最小即D′E最小,∵D′E=1AD∴當AD最小時,經過B、E、D三點的圓最小,此時,AD⊥BC如圖3,過A作AD1⊥BC于D1,∵∠ABC=30°∴BD1=AB?cos∠ABC=cos30°=3,AD1=∴D1M=BD1﹣BM=3﹣1=1由(1)知:在D運動過程中,∠CBE=30°,∴點D運動路徑是線段;當點D位于D1時,由(1)中結論得:,∴BE1=當點D運動到M時,易求得:BE1=∴E點經過的路徑長=BE1+BE1=1故答案為:1.【點睛】本題考查的是圓的綜合,綜合性很強,難度系數較大,運用到了全等和勾股定理等相關知識需要熟練掌握相關基礎知識.23、(1);(2)證明見解析;(3)最小值為【分析】(1)過C做CF⊥AB,垂足為F,由題意可得∠B=30°,用正切函數可求CF的長,再用正弦函數即可求解;(2)如圖(2)1:延長BC到G使CG=BC,易得△CGE≌△CAD,可得CF∥GE,得∠CFA=90°,CF=GE再證DG=AD,得CF=DG,可得四邊形DGFC是矩形即可;(3)如圖(2)2:設ED與AC相交于G,連接FG,先證△EDF≌△FD'B得BD'=DE,當DE最大時最小,然后求解即可;【詳解】解:(1)如圖:過C做CF⊥AB,垂足為F,∵,∴∠A=∠B=30°,BF=3∵tan∠B=∴CF=又∵sin∠CDB=sin45°=∴DC=∴等邊的邊長為;①如圖(2)1:延長BC到G使CG=BC∵∠ACB=120°∴∠GCE=180°-120°=60°,∠A=∠B=30°又∵∠ACB=60°∴∠GCE=∠ACD又∵CE=CD∴△CGE≌△CAD(SAS)∴∠G=∠A=30°,GE=AD又∵EF=FB∴GE∥FC,GE=FC,∴∠BCF=∠G=30°∴∠ACF=∠ACB-∠BCF=90°∴CF∥DG∵∠A=30°∴GD=AD,∴CF=DG∴四邊形DGFC是平行四邊形,又∵∠ACF=90°∴四邊形DGFC是矩形,∴②)如圖(2)2:設ED與AC相交于G,連接FG由題意得:EF=BF,∠EFD=∠D'FB∴△EDF≌△FD'B∴BD'=DE∴BD'=CD∴當BD'取最小值時,有最小值當CD⊥AB時,BD'min=AC,設CDmin=a,則AC=BC=2a,AB=2a的最小值為;【點睛】本題屬于幾何綜合題,考查了矩形的判定、全等三角形的判定、直角三角形的性質等知識點;但本題知識點比較隱蔽,正確做出輔助線,發現所考查的知識點是解答本題的關鍵.24、(1)證明見解析;(2)證明見解析;(3)tan∠ACD=2﹣.【分析】(1)根據BM為切線,BC平分∠ABM,求得∠ABC的度數,再由直徑所對的圓周角為直角,即可求證;(2)根據三角形相似的判定定理證明三角形相似,再由相似三角形對應邊成比例,即可求證;(3)由圖得到∠ACD=∠ABD,根據各個角之間的關系求出∠AFD的度數,用AD表達出其它邊的邊長,再代入正切公式即可求得.【詳解】(1)∵BM是以AB為直徑的⊙O的切線,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=∠ABM=45°∵AB是直徑∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如圖,連接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD∴∠EDO=∠EDO,∠EOD=∠OCD∴△EDO∽△ODC∴∴OD2=DEDC∴OA2=DEDC=EODC(3)如圖,連接BD,AD,DO,作∠BAF=∠DBA,交BD于點F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,∴∠ODB=15°=∠OBD∵∠BAF=∠DBA=15°∴AF=BF,∠AFD=30°∵AB是直徑∴∠ADB=90°∴AF=2AD,DF=AD∴BD=DF+BF=AD+2AD∴tan∠ACD=tan∠ABD===2﹣【點睛】本題考查圓的切線、角平分線的性質,相似三角形的性質以及三角函數中正切的計算問題,屬綜合中檔題.25、(1)拋物線解析式為y=﹣x2+2x+3;直線AC的解析式為y=3x+3;(2)點M的坐標為(0,3);(3)符合條件的點P的坐標為(,)或(,﹣),【解析】分析:(1)設交點式y=a(x+1)(x-3),展開得到-2a=2,然后求出a即可得到拋物線解析式;再確定C(0,3),然后利用待定系數法求直線AC的解析式;(2)利用二次函數的性質確定D的坐標為(1,4),作B點關于y軸的對稱點B′,連接DB′交y軸于M,如圖1,則B′(-3,0),利用兩點之間線段最短可判斷此時MB+MD的值最小,則此時△BD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論