




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,已知△ABC,AB<BC,用尺規作圖的方法在BC上取一點P,使得PA+PC=BC,則下列選項正確的是()A. B. C. D.2.如果一個正多邊形的內角和等于720°,那么這個正多邊形的每一個外角等于()A.45° B.60° C.120° D.135°3.如圖,在菱形ABCD中,對角線AC、BD相交于點O,E為AB的中點且CD=4,則OE等于()A.1 B.2 C.3 D.44.函數的圖象如圖所示,那么函數的圖象大致是()A. B. C. D.5.如圖,PA、PB都是⊙O的切線,切點分別為A、B.四邊形ACBD內接于⊙O,連接OP則下列結論中錯誤的是()A.PA=PB B.∠APB+2∠ACB=180°C.OP⊥AB D.∠ADB=2∠APB6.下列方程中,是一元二次方程的是()A.x+=0 B.ax2+bx+c=0 C.x2+1=0 D.x﹣y﹣1=07.如圖,在正方形ABCD中,AB=4,AC與相交于點O,N是AO的中點,點M在BC邊上,P是OD的中點,過點P作PM⊥BC于點M,交于點N′,則PN-MN′的值為()A. B. C. D.8.已知函數y=ax2+bx+c(a≠0)的圖象如圖,則函數y=ax+b與y=的圖象大致為()A. B.C. D.9.拋物線的頂點坐標是()A.(2,1) B. C. D.10.如圖,△ABC中,D為AC中點,AF∥DE,S△ABF:S梯形AFED=1:3,則S△ABF:S△CDE=()A.1:2 B.2:3 C.3:4 D.1:1二、填空題(每小題3分,共24分)11.因式分解:_______;12.如圖,電燈在橫桿的正上方,在燈光下的影子為,,米,米,點到的距離是3米,則到的距離是__________米.13.一組正方形按如圖所示的方式放置,其中頂點在軸上,頂點,,,,,,在軸上,已知正方形的邊長為,,則正方形的邊長為__________________.14.如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為_____.15.如圖,扇形的圓心角是為,四邊形是邊長為的正方形,點分別在在弧上,那么圖中陰影部分的面積為__________.(結果保留)16.二次函數y=x2?4x+5的圖象的頂點坐標為.17.如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,CE是AB邊上的中線,若AD=3,CE=5,則CD等于_____.18.如圖,在中,點在上,請再添加一個適當的條件,使與相似,那么要添加的條件是__________.(只填一個即可)三、解答題(共66分)19.(10分)已知一只紙箱中裝有除顏色外完全相同的紅色、黃色、藍色乒乓球共100個.從紙箱中任意摸出一球,摸到紅色球、黃色球的概率分別是0.2、0.1.(1)試求出紙箱中藍色球的個數;(2)小明向紙箱中再放進紅色球若干個,小麗為了估計放入的紅球的個數,她將箱子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回箱子中,多次重復上述過程后,她發現摸到紅球的頻率在0.5附近波動,請據此估計小明放入的紅球的個數.20.(6分)如圖,二次函數y=﹣x2+x+3的圖象與x軸交于點A、B(B在A右側),與y軸交于點C.(1)求點A、B、C的坐標;(2)求△ABC的面積.21.(6分)如圖,拋物線y=x2﹣2x﹣3與x軸分別交于A,B兩點(點A在點B的左邊),與y軸交于點C,頂點為D.(1)如圖1,求△BCD的面積;(2)如圖2,P是拋物線BD段上一動點,連接CP并延長交x軸于E,連接BD交PC于F,當△CDF的面積與△BEF的面積相等時,求點E和點P的坐標.22.(8分)如圖1,矩形OABC的頂點A的坐標為(4,0),O為坐標原點,點B在第一象限,連接AC,tan∠ACO=2,D是BC的中點,(1)求點D的坐標;(2)如圖2,M是線段OC上的點,OM=OC,點P是線段OM上的一個動點,經過P、D、B三點的拋物線交軸的正半軸于點E,連接DE交AB于點F.①將△DBF沿DE所在的直線翻折,若點B恰好落在AC上,求此時點P的坐標;②以線段DF為邊,在DF所在直線的右上方作等邊△DFG,當動點P從點O運動到點M時,點G也隨之運動,請直接寫出點G運動的路徑的長.23.(8分)用配方法解一元二次方程24.(8分)計算:|-|-+20200;25.(10分)空間任意選定一點,以點為端點,作三條互相垂直的射線,,.這三條互相垂直的射線分別稱作軸、軸、軸,統稱為坐標軸,它們的方向分別為(水平向前),(水平向右),(豎直向上)方向,這樣的坐標系稱為空間直角坐標系.將相鄰三個面的面積記為,,,且的小長方體稱為單位長方體,現將若干個單位長方體在空間直角坐標系內進行碼放,要求碼放時將單位長方體所在的面與軸垂直,所在的面與軸垂直,所在的面與軸垂直,如圖1所示.若將軸方向表示的量稱為幾何體碼放的排數,軸方向表示的量稱為幾何體碼放的列數,二軸方向表示的量稱為幾何體碼放的層數;如圖2是由若干個單位長方體在空間直角坐標內碼放的一個幾何體,其中這個幾何體共碼放了排列層,用有序數組記作,如圖3的幾何體碼放了排列層,用有序數組記作.這樣我們就可用每一個有序數組表示一種幾何體的碼放方式.(1)有序數組所對應的碼放的幾何體是______________;A.B.C.D.(2)圖4是由若干個單位長方體碼放的一個幾何體的三視圖,則這種碼放方式的有序數組為(______,_______,_______),組成這個幾何體的單位長方體的個數為____________個.(3)為了進一步探究有序數組的幾何體的表面積公式,某同學針對若干個單位長方體進行碼放,制作了下列表格:幾何體有序數組單位長方體的個數表面上面積為S1的個數表面上面積為S2的個數表面上面積為S3的個數表面積根據以上規律,請直接寫出有序數組的幾何體表面積的計算公式;(用,,,,,表示)(4)當,,時,對由個單位長方體碼放的幾何體進行打包,為了節約外包裝材料,我們可以對個單位長方體碼放的幾何體表面積最小的規律進行探究,請你根據自己探究的結果直接寫出使幾何體表面積最小的有序數組,這個有序數組為(______,_______,______),此時求出的這個幾何體表面積的大小為____________(縫隙不計)26.(10分)如圖1,在矩形ABCD中,AE⊥BD于點E.(1)求證:BEBC=AECD.(2)如圖2,若點P是邊AD上一點,且PE⊥EC,求證:AEAB=DEAP.
參考答案一、選擇題(每小題3分,共30分)1、B【詳解】由PB+PC=BC和PA+PC=BC易得PA=PB,根據線段垂直平分線定理的逆定理可得點P在AB的垂直平分線上,于是可判斷D選項正確.故選B.考點:作圖—復雜作圖2、B【分析】先用多邊形的內角和公式求這個正多邊形的邊數為n,再根據多邊形外角和等于360°,可求得每個外角度數.【詳解】解:設這個正多邊形的邊數為n,
∵一個正多邊形的內角和為720°,
∴180°(n-2)=720°,
解得:n=6,
∴這個正多邊形的每一個外角是:360°÷6=60°.
故選:B.【點睛】本題考查了多邊形的內角和與外角和的知識.應用方程思想求邊數是解題關鍵.3、B【分析】利用菱形的性質以及直角三角形斜邊上的中線等于斜邊的一半進而得出答案.【詳解】∵四邊形ABCD是菱形,∴AB=CD=4,AC⊥BD,又∵點E是邊AB的中點,∴OE=AB=1.故選:B.【點睛】此題主要考查了菱形的性質以及直角三角形斜邊上的中線等于斜邊的一半,得出OE=AB是解題關鍵.4、D【解析】首先由反比例函數的圖象位于第二、四象限,得出k<0,則-k>0,所以一次函數圖象經過第二四象限且與y軸正半軸相交.【詳解】解:反比例函數的圖象在第二、四象限,函數的圖象應經過第一、二、四象限.故選D.【點睛】本題考查的知識點:
(1)反比例函數的圖象是雙曲線,當k<0時,它的兩個分支分別位于第二、四象限.
(2)一次函數y=kx+b的圖象當k<0,b>0時,函數y=kx+b的圖象經過第一、二、四象限.5、D【分析】連接,,根據PA、PB都是⊙O的切線,切點分別為A、B,得到,,所以A,C正確;根據得到,即,所以B正確;據此可得答案.【詳解】解:如圖示,連接,,、是的切線,,,所以A,C正確;又∵,,∴在四邊形APBO中,,即,所以B正確;∵D為任意一點,無法證明,故D不正確;故選:D.【點睛】本題考查了圓心角和圓周角,圓的切線的性質和切線長定理,熟悉相關性質是解題的關鍵.6、C【解析】一元二次方程必須滿足兩個條件:(1)未知數的最高次數是2;(2)二次項系數不為1.【詳解】A.該方程不是整式方程,故本選項不符合題意.B.當a=1時,該方程不是關于x的一元二次方程,故本選項不符合題意.C.該方程符合一元二次方程的定義,故本選項不符合題意.D.該方程中含有兩個未知數,屬于二元一次方程,故本選項不符合題意.故選:C.【點睛】本題考查了一元二次方程的性質和判定,掌握一元二次方程必須滿足的條件是解題的關鍵.7、A【分析】根據正方形的性質可得點O為AC的中點,根據三角形中位線的性質可求出PN的長,由PM⊥BC可得PM//CD,根據點P為OD中點可得點N′為OC中點,即可得出AC=4CN′,根據MN′//AB可得△CMN′∽△CBA,根據相似三角形的性質可求出MN′的長,進而可求出PN-MN′的長.【詳解】∵四邊形ABCD是正方形,AB=4,∴OA=OC,AD=AB=4,∵N是AO的中點,P是OD的中點,∴PN是△AOD的中位線,∴PN=AD=2,∵PM⊥BC,∴PM//CD//AB,∴點N′為OC的中點,∴AC=4CN′,∵PM//AB,∴△CMN′∽△CBA,∴,∴MN′=1,∴PN-MN′=2-1=1,故選:A.【點睛】本題考查正方形的性質、三角形中位線的性質及相似三角形的判定與性質,三角形的中位線平行于第三邊,且等于第三邊的一半;熟練掌握三角形中位線的性質及相似三角形的判定定理是解題關鍵.8、C【分析】直接利用二次函數、一次函數、反比例函數的性質分析得出答案.【詳解】∵二次函數開口向下,∴a<0,∵二次函數對稱軸在y軸右側,∴a,b異號,∴b>0,∵拋物線與y軸交在負半軸,∴c<0,∴y=ax+b圖象經過第一、二、四象限,y=的圖象分布在第二、四象限,故選:C.【點睛】本題考查了函數的性質以及圖象問題,掌握二次函數、一次函數、反比例函數的性質是解題的關鍵.9、D【分析】根據拋物線頂點式解析式直接判斷即可.【詳解】解:拋物線解析式為:,∴拋物線頂點坐標為:(﹣2,1)故選:D.【點睛】此題根據拋物線頂點式解析式求頂點坐標,掌握頂點式解析式的各項的含義是解此題的關鍵.10、D【分析】本題考查了平行四邊形性質,相似三角形的性質和判定的應用,注意:相似三角形的面積比等于相似比的平方.【詳解】△ABC中,∵AF∥DE,∴△CDE∽△CAF,∵D為AC中點,∴CD:CA=1:2,∴S△CDE:S△CAF=(CD:CA)2=1:4,∴S△CDE:S梯形AFED=1:3,又∵S△ABF:S梯形AFED=1:3,∴S△ABF:S△CDE=1:1.故選D.【點睛】本題考查了中點的定義,相似三角形的判定與性質,根據相似三角形的性質得出S△CDE:S△CAF=1:4是解題的關鍵.二、填空題(每小題3分,共24分)11、(a-b)(a-b+1)【解析】原式變形后,提取公因式即可得到結果.【詳解】解:原式=(a-b)2+(a-b)=(a-b)(a-b+1),
故答案為:(a-b)(a-b+1)【點睛】此題考查了因式分解-提公因式法,熟練掌握提取公因式的方法是解本題的關鍵.12、【分析】利用相似三角形對應高的比等于相似比,列出方程即可解答.【詳解】∴△PAB∽△PCD,∴AB:CD=P到AB的距離:點P到CD的距離,∴2:5=P到AB的距離:3,∴P到AB的距離為m,故答案為.【點睛】本題主要考查了相似三角形的應用,掌握相似三角形的應用是解題的關鍵.13、【分析】由正方形的邊長為,,,得D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,根據三角函數的定義和正方形的性質,即可得到答案.【詳解】∵正方形的邊長為,,,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1=,B2C2==,同理可得:B3C3=,以此類推:正方形的邊長為:,∴正方形的邊長為:.故答案是:.【點睛】本題主要考查正方形的性質和三角函數的定義綜合,掌握用三角函數的定義解直角三角形,是解題的關鍵.14、【解析】根據圓周角定理的推論及切線長定理,即可得出答案解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠ACB=60°,∴∠BAC=30°,∴CB=1,AB=,∵AP為切線,∴∠CAP=90°,∴∠PAB=60°,又∵AP=BP,∴△PAB為正三角形,∴△PAB的周長為3.點睛:本題主要考查圓周角定理及切線長定理.熟記圓的相關性質是解題的關鍵.15、【分析】由正方形的性質求出扇形的半徑,求得扇形的面積,再減去正方形OEDC的面積即可解答,【詳解】解:∵正方形OCDE的邊長為1,∴OD=∵扇形的圓心角是為∴扇形的面積為∴陰影部分的面積為-1故答案為-1.【點睛】本題考查了扇形的面積計算,確定扇形的半徑并求扇形的面積是解答本題的關鍵.16、(2,1)【分析】將二次函數解析式化為頂點式,即可得到頂點坐標.【詳解】將二次函數配方得則頂點坐標為(2,1)考點:二次函數的圖象和性質.17、【分析】根據直角三角形的性質得出AE=CE=1,進而得出DE=2,利用勾股定理解答即可.【詳解】解:∵在Rt△ABC中,∠ACB=90°,CE為AB邊上的中線,CE=1,∴AE=CE=1,∵AD=3,∴DE=2,∵CD為AB邊上的高,∴在Rt△CDE中,CD=,故答案為:.【點睛】此題考查勾股定理的應用以及直角三角形的性質,關鍵是根據直角三角形的性質得出AE=CE=1.18、或【解析】已知與的公共角相等,根據兩角對應相等的兩個三角形相似再添加一組對應角相等即可.【詳解】解:(公共角)(或)(兩角對應相等的兩個三角形相似)故答案為:或【點睛】本題考查了相似三角形的判定,熟練掌握相似三角形的判定定理是解題的關鍵.三、解答題(共66分)19、(1)50;(2)2【解析】(1)藍色球的個數等于總個數乘以摸到藍色球的概率即可;(2)因為摸到紅球的頻率在0.5附近波動,所以摸出紅球的概率為0.5,再設出紅球的個數,根據概率公式列方程解答即可.【詳解】(1)由已知得紙箱中藍色球的個數為:100×(1﹣0.2﹣0.1)=50(個)(2)設小明放入紅球x個.根據題意得:解得:x=2(個).經檢驗:x=2是所列方程的根.答:小明放入的紅球的個數為2.【點睛】本題考查了利用頻率估計概率,大量反復試驗時,某事件發生的頻率會穩定在某個常數的附近,這個常數就叫做事件概率的估計值.關鍵是根據黑球的頻率得到相應的等量關系.20、(1)點A的坐標為(﹣1,0),點B的坐標為(4,0),點C的坐標為(0,3);(2)【分析】(1)根據題目中的函數解析式可以求得點A、B、C的坐標;(2)根據(1)中點A、點B、點C的坐標可以求得△ABC的面積.【詳解】解:(1)∵二次函數y=x2+x+3=(x﹣4)(x+1),∴當x=0時,y=3,當y=0時,x1=4,x2=﹣1,即點A的坐標為(﹣1,0),點B的坐標為(4,0),點C的坐標為(0,3);(2)∵點A的坐標為(﹣1,0),點B的坐標為(4,0),點C的坐標為(0,3),∴AB=5,OC=3,∴△ABC的面積是:=,即△ABC的面積是.【點睛】本題考查的是二次函數與x軸的交點,分別令x、y為0,即可求出函數與坐標軸的交點,進而求解三角形的面積.21、(1)3;(2)E(5,0),P(,﹣)【分析】(1)分別求出點C,頂點D,點A,B的坐標,如圖1,連接BC,過點D作DM⊥y軸于點M,作點D作DN⊥x軸于點N,證明△BCD是直角三角形,即可由三角形的面積公式求出其面積;(2)先求出直線BD的解析式,設P(a,a2﹣2a﹣3),用含a的代數式表示出直線PC的解析式,聯立兩解析式求出含a的代數式的點F的坐標,過點C作x軸的平行線,交BD于點H,則yH=﹣3,由△CDF與△BEF的面積相等,列出方程,求出a的值,即可寫出E,P的坐標.【詳解】(1)在y=x2﹣2x﹣3中,當x=0時,y=﹣3,∴C(0,﹣3),當x=﹣=1時,y=﹣4,∴頂點D(1,﹣4),當y=0時,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),如圖1,連接BC,過點D作DM⊥y軸于點M,作點D作DN⊥x軸于點N,∴DC2=DM2+CM2=2,BC2=OC2+OB2=18,DB2=DN2+BN2=20,∴DC2+BC2=DB2,∴△BCD是直角三角形,∴S△BCD=DC?BC=×3=3;(2)設直線BD的解析式為y=kx+b,將B(3,0),D(1,﹣4)代入,得,解得,k=2,b=﹣6,∴yBD=2x﹣6,設P(a,a2﹣2a﹣3),直線PC的解析式為y=mx﹣3,將P(a,a2﹣2a﹣3)代入,得am=a2﹣2a﹣3,∵a≠0,∴解得,m=a﹣2,∴yPC=(a﹣2)x﹣3,當y=0時,x=,∴E(,0),聯立,解得,,∴F(,),如圖2,過點C作x軸的平行線,交BD于點H,則yH=﹣3,∴H(,﹣3),∴S△CDF=CH?(yF﹣yD),S△BEF=BE?(﹣yF),∴當△CDF與△BEF的面積相等時,CH?(yF﹣yD)=BE?(﹣yF),即×(+4)=(﹣3)(﹣),解得,a1=4(舍去),a2=,∴E(5,0),P(,﹣).【點睛】此題主要考查二次函數與幾何綜合,解題的關鍵是熟知二次函數的圖像與性質、一次函數的性質及三角形面積的求解.22、(1)D(2,2);(2)①P(0,0);②【解析】(1)根據三角函數求出OC的長度,再根據中點的性質求出CD的長度,即可求出D點的坐標;(2)①證明在該種情況下DE為△ABC的中位線,由此可得F為AB的中點,結合三角形全等即可求得E點坐標,結合二次函數的性質可設二次函數表達式(此表達式為交點式的變形,利用了二次函數的平移的特點),將E點代入即可求得二次函數的表達式,根據表達式的特征可知P點坐標;②可得G點的運動軌跡為,證明△DFF'≌△FGG',可得GG'=FF',求得P點運動到M點時的解析式即可求出F'的坐標,結合①可求得FF'即GG'的長度.【詳解】解:(1)∵四邊形OABC為矩形,∴BC=OA=4,∠AOC=90°,∵在Rt△ACO中,tan∠ACO==2,∴OC=2,又∵D為CB中點,∴CD=2,∴D(2,2);(2)①如下圖所示,若點B恰好落在AC上的時,根據折疊的性質,∵D為BC的中點,∴CD=BD,∴,∴,∴,∴,DF為△ABC的中位線,∴AF=BF,∵四邊形ABCD為矩形∴∠ABC=∠BAE=90°在△BDF和△AEF中,∵∴△BDF≌△AEF,∴AE=BD=2,∴E(6,0),設,將E(6,0)帶入,8a+2=0∴a=,則二次函數解析式為,此時P(0,0);②如圖,當動點P從點O運動到點M時,點F運動到點F',點G也隨之運動到G'.連接GG'.當點P向點M運動時,拋物線開口變大,F點向上線性移動,所以G也是線性移動.∵OM=OC=∴,當P點運動到M點時,設此時二次函數表達式為,將代入得,解得,所以拋物線解析式為,整理得.當y=0時,,解得x=8(已舍去負值),所以此時,設此時直線的解析式為y=kx+b,將D(2,2),E(8,0)代入解得,所以,當x=4時,,所以,由①得,所以,∵△DFG、△DF'G'為等邊三角形,∴∠GDF=∠G'DF'=60°,DG=DF,DG'=DF',∴∠GDF﹣∠GDF'=∠G'DF'﹣∠GDF',即∠G'DG=∠F'DF,在△DFF'與△FGG'中,,∴△DFF'≌△FGG'(SAS),∴GG'=FF',即G運動路徑的長為.【點睛】本題考查二次函數綜合,解直角三角形,全等三角形的性質與判定,三角形中位線定理,一次函數的應用,折疊問題.(1)中能根據正切求得OC的長度是解決此問的關鍵;(2)①熟練掌握折疊前后對應邊相等,對應角相等是解題關鍵;②中能通過分析得出G點的運動軌跡為線段GG',它的長度等于FF',是解題關鍵.23、,【分析】根據配方法解一元二次方程的步驟,解方程即可.【詳解】解:移項得x2﹣6x=7,配方得x2﹣6x+9=7+9,即,∴-3=±4,∴,.【點睛】本題考查了配方法解一元二次方程,正確配方是解題的關鍵:“當二次項系數為1時,方程兩邊同時加一次項系數一半的平方”.24、【分析】先根據絕對值的意義、二次根式的性質、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內蒙古建筑職業技術學院《工程流體力學B》2023-2024學年第二學期期末試卷
- 太原理工大學《熱流體學及應用》2023-2024學年第一學期期末試卷
- 山東省日照市山海天旅游度假區2025年數學三下期末綜合測試模擬試題含解析
- 昆明學院《安全信息技術》2023-2024學年第二學期期末試卷
- 延安大學《研究型建筑設計》2023-2024學年第二學期期末試卷
- 上海對外經貿大學《世界文化產業》2023-2024學年第一學期期末試卷
- 一嗨租車會員注冊協議書二零二五年
- 二零二五版裝修質量保證及售后服務承諾書
- 二零二五版兼職人員聘用協議
- 買車補充協議書及相關合同書條款
- 國家開放大學(江西)地域文化(專)任務1-4試題及答案
- QCR 409-2017 鐵路后張法預應力混凝土梁管道壓漿技術條件
- 南師地信培養方案
- 采購工作調研報告(3篇)
- 10KV高壓開關柜操作(培訓課件PPT)
- 希爾國際商務第11版英文教材課件完整版電子教案
- 《學弈》優質課一等獎課件
- 2023年6月大學英語四級考試真題(第1套)(含答案)
- 靜脈導管常見并發癥臨床護理實踐指南1
- Sup20普通瀝青混合料目標配合比設計
- 2023年北京天文館招考聘用筆試參考題庫附答案詳解
評論
0/150
提交評論