




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內(nèi)切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.2.設(shè)等比數(shù)列的前項和為,若,則的值為()A. B. C. D.3.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.4.在區(qū)間上隨機取一個數(shù),使直線與圓相交的概率為()A. B. C. D.5.已知偶函數(shù)在區(qū)間內(nèi)單調(diào)遞減,,,,則,,滿足()A. B. C. D.6.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.7.若各項均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.48.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.89.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.10.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.11.把函數(shù)圖象上各點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為()A. B. C. D.12.設(shè)為等差數(shù)列的前項和,若,,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),當(dāng)時,記最大值為,則的最小值為______.14.在平面五邊形中,,,,且.將五邊形沿對角線折起,使平面與平面所成的二面角為,則沿對角線折起后所得幾何體的外接球的表面積是______.15.已知數(shù)列遞增的等比數(shù)列,若,,則______.16.在面積為的中,,若點是的中點,點滿足,則的最大值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了解廣大學(xué)生家長對校園食品安全的認(rèn)識,某市食品安全檢測部門對該市家長進(jìn)行了一次校園食品安全網(wǎng)絡(luò)知識問卷調(diào)查,每一位學(xué)生家長僅有一次參加機會,現(xiàn)對有效問卷進(jìn)行整理,并隨機抽取出了200份答卷,統(tǒng)計這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表).(1)請利用正態(tài)分布的知識求;(2)該市食品安全檢測部門為此次參加問卷調(diào)查的學(xué)生家長制定如下獎勵方案:①得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費:②每次獲贈的隨機話費和對應(yīng)的概率為:獲贈的隨機話費(單位:元)概率市食品安全檢測部門預(yù)計參加此次活動的家長約5000人,請依據(jù)以上數(shù)據(jù)估計此次活動可能贈送出多少話費?附:①;②若;則,,.18.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項和;(2)若,求數(shù)列的前n項和為.19.(12分)某市環(huán)保部門對該市市民進(jìn)行了一次垃圾分類知識的網(wǎng)絡(luò)問卷調(diào)查,每一位市民僅有一次參加機會,通過隨機抽樣,得到參加問卷調(diào)查的人的得分(滿分:分)數(shù)據(jù),統(tǒng)計結(jié)果如下表所示.組別頻數(shù)(1)已知此次問卷調(diào)查的得分服從正態(tài)分布,近似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表),請利用正態(tài)分布的知識求;(2)在(1)的條件下,環(huán)保部門為此次參加問卷調(diào)查的市民制定如下獎勵方案.(?。┑梅植坏陀诘目梢垣@贈次隨機話費,得分低于的可以獲贈次隨機話費;(ⅱ)每次贈送的隨機話費和相應(yīng)的概率如下表.贈送的隨機話費/元概率現(xiàn)市民甲要參加此次問卷調(diào)查,記為該市民參加問卷調(diào)查獲贈的話費,求的分布列及數(shù)學(xué)期望.附:,若,則,,.20.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點、分別為,的中點,且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.21.(12分)[2018·石家莊一檢]已知函數(shù).(1)若,求函數(shù)的圖像在點處的切線方程;(2)若函數(shù)有兩個極值點,,且,求證:.22.(10分)已知均為正實數(shù),函數(shù)的最小值為.證明:(1);(2).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
可設(shè)的內(nèi)切圓的圓心為,設(shè),,可得,由切線的性質(zhì):切線長相等推得,解得、,并設(shè),求得的值,推得為等邊三角形,由焦距為三角形的高,結(jié)合離心率公式可得所求值.【詳解】可設(shè)的內(nèi)切圓的圓心為,為切點,且為中點,,設(shè),,則,且有,解得,,設(shè),,設(shè)圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質(zhì),注意運用三角形的內(nèi)心性質(zhì)和等邊三角形的性質(zhì),切線的性質(zhì),考查化簡運算能力,屬于中檔題.2.C【解析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點睛】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計算能力,屬于基礎(chǔ)題.3.D【解析】
利用是偶函數(shù)化簡,結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.4.C【解析】
根據(jù)直線與圓相交,可求出k的取值范圍,根據(jù)幾何概型可求出相交的概率.【詳解】因為圓心,半徑,直線與圓相交,所以,解得所以相交的概率,故選C.【點睛】本題主要考查了直線與圓的位置關(guān)系,幾何概型,屬于中檔題.5.D【解析】
首先由函數(shù)為偶函數(shù),可得函數(shù)在內(nèi)單調(diào)遞增,再由,即可判定大小【詳解】因為偶函數(shù)在減,所以在上增,,,,∴.故選:D【點睛】本題考查函數(shù)的奇偶性和單調(diào)性,不同類型的數(shù)比較大小,應(yīng)找一個中間數(shù),通過它實現(xiàn)大小關(guān)系的傳遞,屬于中檔題.6.B【解析】
推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數(shù)”6,28,496,8128,33550336,隨機分為兩組,一組2個,另一組3個,基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),∴6和28恰好在同一組的概率.故選:B.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.7.C【解析】
由正項等比數(shù)列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.【點睛】本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.8.B【解析】
建立平面直角坐標(biāo)系,將已知條件轉(zhuǎn)化為所設(shè)未知量的關(guān)系式,再將的最小值轉(zhuǎn)化為用該關(guān)系式表達(dá)的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標(biāo)系如下圖所示,設(shè),,且,由于,所以..所以,即..當(dāng)且僅當(dāng)時取得最小值,此時由得,當(dāng)時,有最小值為,即,,解得.所以當(dāng)且僅當(dāng)時有最小值為.故選:B【點睛】本小題主要考查向量的位置關(guān)系、向量的模,考查基本不等式的運用,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.9.C【解析】
根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎(chǔ)題.10.C【解析】
根據(jù),兩邊平方,化簡得,再利用數(shù)量積定義得到求解.【詳解】因為平面向量,滿足,且,所以,所以,所以,所以,所以與的夾角為.故選:C【點睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運算,屬于基礎(chǔ)題.11.D【解析】
試題分析:把函數(shù)圖象上各點的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那么所得圖象的一個對稱中心為,故選D.考點:三角函數(shù)的圖象與性質(zhì).12.C【解析】
根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
易知,設(shè),,利用絕對值不等式的性質(zhì)即可得解.【詳解】,設(shè),,令,當(dāng)時,,所以單調(diào)遞減令,當(dāng)時,,所以單調(diào)遞增所以當(dāng)時,,,則則,即故答案為:.【點睛】本題考查函數(shù)最值的求法,考查絕對值不等式的性質(zhì),考查轉(zhuǎn)化思想及邏輯推理能力,屬于難題.14.【解析】
設(shè)的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,得到直線與的交點為幾何體外接球的球心,結(jié)合三角形的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】設(shè)的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,則由球的性質(zhì)可知,直線與的交點為幾何體外接球的球心,取的中點,連接,,由條件得,,連接,因為,從而,連接,則為所得幾何體外接球的半徑,在直角中,由,,可得,即外接球的半徑為,故所得幾何體外接球的表面積為.故答案為:.【點睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及多面體的外接球的表面積的計算,其中解答中熟記空間幾何體的結(jié)構(gòu)特征,求得外接球的半徑是解答的關(guān)鍵,著重考查了空間想象能力與運算求解能力,屬于中檔試題.15.【解析】
,建立方程組,且,求出,進(jìn)而求出的公比,即可求出結(jié)論.【詳解】數(shù)列遞增的等比數(shù)列,,,解得,所以的公比為,.
故答案為:.【點睛】本題考查等比數(shù)列的性質(zhì)、通項公式,屬于基礎(chǔ)題.16.【解析】
由任意三角形面積公式與構(gòu)建關(guān)系表示|AB||AC|,再由已知與平面向量的線性運算、平面向量數(shù)量積的運算轉(zhuǎn)化,最后由重要不等式求得最值.【詳解】由△ABC的面積為得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①與②的平方和得:|AB||AC|=,又點M是AB的中點,點N滿足,所以,當(dāng)且僅當(dāng)時,取等號,即的最大值是為.故答案為:【點睛】本題考查平面向量中由線性運算表示未知向量,進(jìn)而由重要不等式求最值,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)估計此次活動可能贈送出100000元話費【解析】
(1)根據(jù)正態(tài)分布的性質(zhì)可求的值.(2)設(shè)某家長參加活動可獲贈話費為元,利用題設(shè)條件求出其分布列,再利用公式求出其期望后可得計此次活動可能贈送出的話費數(shù)額.【詳解】(1)根據(jù)題中所給的統(tǒng)計表,結(jié)合題中所給的條件,可以求得又,,所以;(2)根據(jù)題意,某家長參加活動可獲贈話費的可能值有10,20,30,40元,且每位家長獲得贈送1次、2次話費的概率都為,得10元的情況為低于平均值,概率,得20元的情況有兩種,得分低于平均值,一次性獲20元話費;得分不低于平均值,2次均獲贈10元話費,概率,得30元的情況為:得分不低于平均值,一次獲贈10元話費,另一次獲贈20元話費,其概率為,得40元的其情況得分不低于平均值,兩次機會均獲20元話費,概率為.所以變量的分布列為:某家長獲贈話費的期望為.所以估計此次活動可能贈送出100000元話費.【點睛】本題考查正態(tài)分布、離散型隨機變量的分布列及數(shù)學(xué)期望,注意與正態(tài)分布有關(guān)的計算要利用該分布的密度函數(shù)圖象的對稱性來進(jìn)行,本題屬于中檔題.18.(1)(2)【解析】
(1)利用等差數(shù)列的通項公式以及等比中項求出公差,從而求出,再利用等比數(shù)列的前項和公式即可求解.(2)由(1)求出,再利用裂項求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【點睛】本題考查了等差數(shù)列、等比數(shù)列的通項公式、等比數(shù)列的前項和公式、裂項求和法,需熟記公式,屬于基礎(chǔ)題.19.(1);(2)見解析.【解析】
(1)根據(jù)題中所給的統(tǒng)計表,利用公式計算出平均數(shù)的值,再利用數(shù)據(jù)之間的關(guān)系將、表示為,,利用題中所給數(shù)據(jù),以及正態(tài)分布的概率密度曲線的對稱性,求出對應(yīng)的概率;(2)根據(jù)題意,高于平均數(shù)和低于平均數(shù)的概率各為,再結(jié)合得元、元的概率,分析得出話費的可能數(shù)據(jù)都有哪些,再利用公式求得對應(yīng)的概率,進(jìn)而得出分布列,之后利用離散型隨機變量的分布列求出其數(shù)學(xué)期望.【詳解】(1)由題意可得,易知,,,;(2)根據(jù)題意,可得出隨機變量的可能取值有、、、元,,,,.所以,隨機變量的分布列如下表所示:所以,隨機變量的數(shù)學(xué)期望為.【點睛】本題考查概率的計算,涉及到平均數(shù)的求法、正態(tài)分布概率的計算以及離散型隨機變量分布列及其數(shù)學(xué)期望,在解題時要弄清楚隨機變量所滿足的分布列類型,結(jié)合相應(yīng)公式計算對應(yīng)事件的概率,考查計算能力,屬于中等題.20.(1)見解析(2)【解析】
(1)首先可得,再面面垂直的性質(zhì)可得平面,即可得到,再由,即可得到線面垂直;(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標(biāo)系,利用空間向量法求出線面角;【詳解】解:(1)∵,點為的中點,∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點,∴,∴,又平面,平面,,∴平面.(2)過點做平面的垂線,以為原點,分別以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 委托印刷合同范本3篇
- 城市道路綠化建設(shè)養(yǎng)護(hù)招標(biāo)3篇
- 建筑外墻保溫勞務(wù)合作合同2篇
- 工程索賠中的合同解釋與適用
- 工傷處理委托
- 戶口辦理特別授權(quán)委托書3篇
- 勞動合同解除企業(yè)合規(guī)操作指南3篇
- 方便烤肉生產(chǎn)考核試卷
- 煙草制品零售庫存風(fēng)險控制考核試卷
- 科技會展城市形象宣傳與推廣考核試卷
- 2025年高考?xì)v史總復(fù)習(xí)高中歷史必修二八大專題知識復(fù)習(xí)提綱
- 2025事業(yè)單位考試題庫及答案200題
- 臨床執(zhí)業(yè)醫(yī)師考試健康教育技能試題及答案
- 機車車輛試題及答案
- 地理澳大利亞課件-2024-2025學(xué)年人教版(2024)初中地理七年級下冊
- 常用施工規(guī)定和技術(shù)要求1
- 新版《醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范》(2024)培訓(xùn)試題及答案
- 大數(shù)據(jù)與人工智能營銷(南昌大學(xué))知到智慧樹章節(jié)答案
- 健合集團(tuán)筆試在線測評題
- 2024屆江蘇省蘇錫常鎮(zhèn)四市高三二模地理試題含答案解析
- 99S203 消防水泵接合器安裝圖集
評論
0/150
提交評論