




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是圓心為坐標原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉到交圓于點,則的最大值為()A.3 B.2 C. D.2.已知的垂心為,且是的中點,則()A.14 B.12 C.10 D.83.已知復數z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知等比數列的前項和為,且滿足,則的值是()A. B. C. D.5.已知函數,,當時,不等式恒成立,則實數a的取值范圍為()A. B. C. D.6.給出以下四個命題:①依次首尾相接的四條線段必共面;②過不在同一條直線上的三點,有且只有一個平面;③空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個數是()A.0 B.1 C.2 D.37.已知復數是純虛數,其中是實數,則等于()A. B. C. D.8.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.39.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則10.已知實數,滿足約束條件,則目標函數的最小值為A. B.C. D.11.若集合,則=()A. B. C. D.12.如果,那么下列不等式成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數列的前n項和為,,,則=_______.14.已知△ABC得三邊長成公比為2的等比數列,則其最大角的余弦值為_____.15.已知橢圓Г:,F1、F2是橢圓Г的左、右焦點,A為橢圓Г的上頂點,延長AF2交橢圓Г于點B,若為等腰三角形,則橢圓Г的離心率為___________.16.正方形的邊長為2,圓內切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設拋物線過點.(1)求拋物線C的方程;(2)F是拋物線C的焦點,過焦點的直線與拋物線交于A,B兩點,若,求的值.18.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.19.(12分)若函數為奇函數,且時有極小值.(1)求實數的值與實數的取值范圍;(2)若恒成立,求實數的取值范圍.20.(12分)正項數列的前n項和Sn滿足:(1)求數列的通項公式;(2)令,數列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.21.(12分)在直角坐標系中,直線的參數方程為(為參數,).在以為極點,軸正半軸為極軸的極坐標中,曲線:.(1)當時,求與的交點的極坐標;(2)直線與曲線交于,兩點,線段中點為,求的值.22.(10分)已知函數(,),.(Ⅰ)討論的單調性;(Ⅱ)若對任意的,恒成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
設射線OA與x軸正向所成的角為,由三角函數的定義得,,,利用輔助角公式計算即可.【詳解】設射線OA與x軸正向所成的角為,由已知,,,所以,當時,取得等號.故選:C.【點睛】本題考查正弦型函數的最值問題,涉及到三角函數的定義、輔助角公式等知識,是一道容易題.2.A【解析】
由垂心的性質,得到,可轉化,又即得解.【詳解】因為為的垂心,所以,所以,而,所以,因為是的中點,所以.故選:A【點睛】本題考查了利用向量的線性運算和向量的數量積的運算率,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.3.A【解析】
設,由得:,由復數相等可得的值,進而求出,即可得解.【詳解】設,由得:,即,由復數相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.【點睛】本題考查共軛復數的求法,考查對復數相等的理解,考查復數在復平面對應的點,考查運算能力,屬于常考題.4.C【解析】
利用先求出,然后計算出結果.【詳解】根據題意,當時,,,故當時,,數列是等比數列,則,故,解得,故選.【點睛】本題主要考查了等比數列前項和的表達形式,只要求出數列中的項即可得到結果,較為基礎.5.D【解析】
由變形可得,可知函數在為增函數,由恒成立,求解參數即可求得取值范圍.【詳解】,即函數在時是單調增函數.則恒成立..令,則時,單調遞減,時單調遞增.故選:D.【點睛】本題考查構造函數,借助單調性定義判斷新函數的單調性問題,考查恒成立時求解參數問題,考查學生的分析問題的能力和計算求解的能力,難度較難.6.B【解析】
用空間四邊形對①進行判斷;根據公理2對②進行判斷;根據空間角的定義對③進行判斷;根據空間直線位置關系對④進行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯誤.②中,由公理2知道,過不在同一條直線上的三點,有且只有一個平面,故②正確.③中,由空間角的定義知道,空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補,故③錯誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯誤.故選:B【點睛】本小題考查空間點,線,面的位置關系及其相關公理,定理及其推論的理解和認識;考查空間想象能力,推理論證能力,考查數形結合思想,化歸與轉化思想.7.A【解析】
對復數進行化簡,由于為純虛數,則化簡后的復數形式中,實部為0,得到的值,從而得到復數.【詳解】因為為純虛數,所以,得所以.故選A項【點睛】本題考查復數的四則運算,純虛數的概念,屬于簡單題.8.D【解析】
畫出可行域,將化為,通過平移即可判斷出最優解,代入到目標函數,即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標函數為直線方程的斜截式,.由圖可知當直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規劃問題.一般第一步畫出可行域,然后將目標函數轉化為的形式,在可行域內通過平移找到最優解,將最優解帶回到目標函數即可求出最值.注意畫可行域時,邊界線的虛實問題.9.C【解析】
根據空間中平行關系、垂直關系的相關判定和性質可依次判斷各個選項得到結果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.【點睛】本題考查空間中線面關系、面面關系相關命題的辨析,關鍵是熟練掌握空間中的平行關系與垂直關系的相關命題.10.B【解析】
作出不等式組對應的平面區域,目標函數的幾何意義為動點到定點的斜率,利用數形結合即可得到的最小值.【詳解】解:作出不等式組對應的平面區域如圖:目標函數的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規劃的應用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數形結合是解決本題的關鍵.11.C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎題.12.D【解析】
利用函數的單調性、不等式的基本性質即可得出.【詳解】∵,∴,,,.故選:D.【點睛】本小題主要考查利用函數的單調性比較大小,考查不等式的性質,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用求出公差,結合等差數列的通項公式可求.【詳解】設公差為,因為,所以,即.所以.故答案為:【點睛】本題主要考查等差數列通項公式的求解,利用等差數列的基本量是求解這類問題的通性通法,側重考查數學運算的核心素養.14.-【解析】試題分析:根據題意設三角形的三邊長分別設為為a,2a,2a,∵2a>2a>a,∴2a所對的角為最大角,設為θ,則根據余弦定理得考點:余弦定理及等比數列的定義.15.【解析】
由題意可得等腰三角形的兩條相等的邊,設,由題可得的長,在三角形中,三角形中由余弦定理可得的值相等,可得的關系,從而求出橢圓的離心率【詳解】如圖,若為等腰三角形,則|BF1|=|AB|.設|BF2|=t,則|BF1|=2a?t,所以|AB|=a+t=|BF1|=2a?t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,設∠BAO=θ,則∠BAF1=2θ,所以Г的離心率e=,結合余弦定理,易得在中,,所以,即e==,故答案為:.【點睛】此題考查橢圓的定義及余弦定理的簡單應用,屬于中檔題.16.【解析】
根據向量關系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點睛】此題考查求平面向量數量積的取值范圍,涉及基本運算,關鍵在于恰當地對向量進行轉換,便于計算解題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)代入計算即可.(2)設直線AB的方程為,再聯立直線與拋物線的方程,消去可得的一元二次方程,再根據韋達定理與求解,進而利用弦長公式求解即可.【詳解】解:(1)因為拋物線過點,所以,所以,拋物線的方程為(2)由題意知直線AB的斜率存在,可設直線AB的方程為,,.因為,所以,聯立,化簡得,所以,,所以,,解得,所以.【點睛】本題考查拋物線的方程以及聯立直線與拋物線求弦長的簡單應用.屬于基礎題.18.(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點M,連接ME,則.因為平面,平面,所以平面.(Ⅱ)因為平面ABC,所以點到平面ABC的距離等于點到平面ABC的距離.如圖,設O是AC的中點,連接,OB.因為為正三角形,所以,又平面平面,平面平面,所以平面ABC.所以點到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【點睛】本題考查證明線面平行,計算體積,意在考查推理證明,空間想象能力,計算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關鍵是證明線線平行,一般構造平行四邊形,則對邊平行,或是構造三角形中位線.19.(1),;(2)【解析】
(1)由奇函數可知在定義域上恒成立,由此建立方程,即可求出實數的值;對函數進行求導,,通過導數求出,若,則恒成立不符合題意,當,可證明,此時時有極小值.(2)可知,進而得到,令,通過導數可知在上為單調減函數,由可得,從而可求實數的取值范圍.【詳解】(1)由函數為奇函數,得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當時,;當時,,故在上遞減,在上遞增,若,則恒成立,單調遞增,無極值點;所以,解得,取,則又函數的圖象在區間上連續不間斷,故由函數零點存在性定理知在區間上,存在為函數的零點,為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構造函數,所以,當時,,即恒成立,故在上為單調減函數,其中.則可轉化為,故,由,設,可得當時,則在上遞增,故.綜上,的取值范圍是.【點睛】本題考查了利用導數研究函數的單調性,考查了利用導數求函數的最值,考查了奇函數的定義,考查了轉化的思想.對于恒成立的問題,常轉化為求的最小值,使;對于恒成立的問題,常轉化為求的最大值,使.20.(1)(2)見解析【解析】
(1)因為數列的前項和滿足:,所以當時,,即解得或,因為數列都是正項,所以,因為,所以,解得或,因為數列都是正項,所以,當時,有,所以,解得,當時,,符合所以數列的通項公式,;(2)因為,所以,所以數列的前項和為:,當時,有,所以,所以對于任意,數列的前項和.21.(1),;(2)【解析】
(1)依題意可知,直線的極坐標方程為(),再對分三種情況考慮;(2)利用直線參數方程參數的幾何意義,求弦長即可得到答案.【詳解】(1)依題意可知,直線的極坐標方程為(),當時,聯立解得交點,當時,經檢驗滿足兩方程,(易漏解之處忽略的情況)當時,無交點;綜上,曲線與直線的點極坐標為,,(2)把直線的參數方程代入曲線,得,可知,,所以.【點睛】本題考查直線與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全糖漿行業市場發展分析及發展趨勢與投資管理策略研究報告
- 2025-2030全球及中國全息箔行業市場現狀供需分析及投資評估規劃分析研究報告
- 安徽省1號卷A10聯盟2025屆高三第六次模擬考試英語試卷含答案
- 云南省景東縣第二中學2025屆高考沖刺英語模擬試題含解析
- 2025屆湖南省長沙市開福區第一中學高三第二次模擬考試英語試卷含解析
- 2025屆吉林省吉林大學附屬中學高三第六次模擬考試英語試卷含解析
- 2025屆河北省唐山市路北區唐山一中高考仿真卷英語試卷含解析
- 2025屆四川省成都市雙流中學高考仿真模擬英語試卷含答案
- 黑龍江省哈爾濱市南崗區哈爾濱三中2025屆高三第三次模擬考試英語試卷含解析
- 山東省青州二中2025屆高考英語三模試卷含解析
- 2025年高考歷史總復習高中歷史必修二八大專題知識復習提綱
- 2025事業單位考試題庫及答案200題
- 臨床執業醫師考試健康教育技能試題及答案
- 機車車輛試題及答案
- 地理澳大利亞課件-2024-2025學年人教版(2024)初中地理七年級下冊
- 常用施工規定和技術要求1
- 新版《醫療器械經營質量管理規范》(2024)培訓試題及答案
- 健合集團筆試在線測評題
- 禮儀文書寫作課件
- 20CrMnTi較詳細材料屬性
- 99S203 消防水泵接合器安裝圖集
評論
0/150
提交評論