


版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023學年四川成都錦江區中考測試卷猜想數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在測試卷卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在測試卷卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB∥CD,DB⊥BC,∠2=50°,則∠1的度數是()A.40° B.50° C.60° D.140°2.將一副三角板按如圖方式擺放,∠1與∠2不一定互補的是()A. B. C. D.3.如圖,在⊙O中,直徑AB⊥弦CD,垂足為M,則下列結論一定正確的是()A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD4.在平面直角坐標系中,點是線段上一點,以原點為位似中心把放大到原來的兩倍,則點的對應點的坐標為()A. B.或C. D.或5.隨著服裝市場競爭日益激烈,某品牌服裝專賣店一款服裝按原售價降價20%,現售價為a元,則原售價為()A.(a﹣20%)元 B.(a+20%)元 C.54a元 D.456.下列運算正確的是()A.a6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2?a3=a6D.5a+2b=7ab7.如圖,在正方形OABC中,點A的坐標是(﹣3,1),點B的縱坐標是4,則B,C兩點的坐標分別是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)8.如圖,在平面直角坐標系中,直線y=k1x+2(k1≠0)與x軸交于點A,與y軸交于點B,與反比例函數y=在第二象限內的圖象交于點C,連接OC,若S△OBC=1,tan∠BOC=,則k2的值是()A.3 B.﹣ C.﹣3 D.﹣69.□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF10.小明在一次登山活動中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測量出這塊礦石的體積.如果他量出玻璃杯的內直徑d,把礦石完全浸沒在水中,測出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.計算(2a)3的結果等于__.12.某十字路口的交通信號燈每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當你抬頭看信號燈時,是綠燈的概率為____.13.如圖,把Rt△ABC放在直角坐標系內,其中∠CAB=90°,BC=5,點A,B的坐標分別為(﹣1,0),(﹣4,0),將△ABC沿x軸向左平移,當點C落在直線y=﹣2x﹣6上時,則點C沿x軸向左平移了_____個單位長度.14.已知反比例函數y=在第二象限內的圖象如圖,經過圖象上兩點A、E分別引y軸與x軸的垂線,交于點C,且與y軸與x軸分別交于點M、B.連接OC交反比例函數圖象于點D,且,連接OA,OE,如果△AOC的面積是15,則△ADC與△BOE的面積和為_____.15.如圖,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分線交BC于點D,AC的垂直平分線交BC于點E,則∠DAE=______.16.如圖,在圓O中,AB為直徑,AD為弦,過點B的切線與AD的延長線交于點C,AD=DC,則∠C=________度.三、解答題(共8題,共72分)17.(8分)如圖,一次函數y=﹣12x+52的圖象與反比例函數y=(1)求反比例函數的解析式;(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.18.(8分)“六一”兒童節前夕,某縣教育局準備給留守兒童贈送一批學習用品,先對紅星小學的留守兒童人數進行抽樣統計,發現各班留守兒童人數分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統計圖①和圖②.請根據相關信息,解答下列問題:(1)該校有_____個班級,補全條形統計圖;(2)求該校各班留守兒童人數數據的平均數,眾數與中位數;(3)若該鎮所有小學共有60個教學班,請根據樣本數據,估計該鎮小學生中,共有多少名留守兒童.19.(8分)已知:△ABC在坐標平面內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網格中,每個小正方形的邊長是1個單位長度)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;以點B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標及△A2BC2的面積.20.(8分)先化簡,再求值:,其中x滿足x2-2x-2=0.21.(8分)如圖,△ABC內接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF(1)判斷AF與⊙O的位置關系并說明理由;(2)若⊙O的半徑為4,AF=3,求AC的長.22.(10分)計算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣2|23.(12分)某企業信息部進行市場調研發現:信息一:如果單獨投資A種產品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關系的部分對應值如下表:x(萬元)122.535yA(萬元)0.40.811.22信息二:如果單獨投資B種產品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數關系:yB=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.(1)求出yB與x的函數關系式;(2)從所學過的一次函數、二次函數、反比例函數中確定哪種函數能表示yA與x之間的關系,并求出yA與x的函數關系式;(3)如果企業同時對A、B兩種產品共投資15萬元,請設計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?24.如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE,求證:CE=CF;如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD;運用(1)(2)解答中所積累的經驗和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(共10小題,每小題3分,共30分)1、A【答案解析】測試卷分析:根據直角三角形兩銳角互余求出∠3,再根據兩直線平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故選A.2、D【答案解析】A選項:∠1+∠2=360°-90°×2=180°;B選項:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C選項:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D選項:∠1和∠2不一定互補.故選D.點睛:本題主要掌握平行線的性質與判定定理,關鍵在于通過角度之間的轉化得出∠1和∠2的互補關系.3、D【答案解析】
根據垂徑定理判斷即可.【題目詳解】連接DA.∵直徑AB⊥弦CD,垂足為M,∴CM=MD,∠CAB=∠DAB.∵2∠DAB=∠BOD,∴∠CAD=∠BOD.故選D.【答案點睛】本題考查的是垂徑定理和圓周角定理,熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解答此題的關鍵.4、B【答案解析】分析:根據位似變換的性質計算即可.詳解:點P(m,n)是線段AB上一點,以原點O為位似中心把△AOB放大到原來的兩倍,則點P的對應點的坐標為(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故選B.點睛:本題考查的是位似變換、坐標與圖形的性質,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k.5、C【答案解析】
根據題意列出代數式,化簡即可得到結果.【題目詳解】根據題意得:a÷(1?20%)=a÷45=5故答案選:C.【答案點睛】本題考查的知識點是列代數式,解題的關鍵是熟練的掌握列代數式.6、B【答案解析】
A選項:利用同底數冪的除法法則,底數不變,只把指數相減即可;
B選項:利用平方差公式,應先把2a看成一個整體,應等于(2a)2-b2而不是2a2-b2,故本選項錯誤;
C選項:先把(-a)2化為a2,然后利用同底數冪的乘法法則,底數不變,只把指數相加,即可得到;
D選項:兩項不是同類項,故不能進行合并.【題目詳解】A選項:a6÷a2=a4,故本選項錯誤;
B選項:(2a+b)(2a-b)=4a2-b2,故本選項正確;
C選項:(-a)2?a3=a5,故本選項錯誤;
D選項:5a與2b不是同類項,不能合并,故本選項錯誤;
故選:B.【答案點睛】考查學生同底數冪的乘除法法則的運用以及對平方差公式的掌握,同時要求學生對同類項進行正確的判斷.7、A【答案解析】
作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,由AAS證明△AOE≌△OCD,得出AE=OD,OE=CD,由點A的坐標是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【題目詳解】解:如圖所示:作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,則∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四邊形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵點A的坐標是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故選A.【答案點睛】本題考查了正方形的性質、全等三角形的判定與性質、坐標與圖形性質;熟練掌握正方形的性質,證明三角形全等是解決問題的關鍵.8、C【答案解析】
如圖,作CH⊥y軸于H.通過解直角三角形求出點C坐標即可解決問題.【題目詳解】解:如圖,作CH⊥y軸于H.由題意B(0,2),∵∴CH=1,∵tan∠BOC=∴OH=3,∴C(﹣1,3),把點C(﹣1,3)代入,得到k2=﹣3,故選C.【答案點睛】本題考查反比例函數于一次函數的交點問題,銳角三角函數等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考常考題型.9、B【答案解析】【分析】根據平行線的判定方法結合已知條件逐項進行分析即可得.【題目詳解】A、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四邊形AECF是平行四邊形,故不符合題意;B、如圖所示,AE=CF,不能得到四邊形AECF是平行四邊形,故符合題意;C、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四邊形AECF是平行四邊形,故不符合題意;D、如圖,∵四邊形ABCD是平行四邊形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四邊形AECF是平行四邊形,故不符合題意,故選B.【答案點睛】本題考查了平行四邊形的性質與判定,熟練掌握平行四邊形的判定定理與性質定理是解題的關鍵.10、A【答案解析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.二、填空題(本大題共6個小題,每小題3分,共18分)11、8【答案解析】測試卷分析:根據冪的乘方與積的乘方運算法則進行計算即可考點:(1)、冪的乘方;(2)、積的乘方12、【答案解析】
隨機事件A的概率P(A)=事件A可能出現的結果數÷所有可能出現的結果數,據此用綠燈亮的時間除以三種燈亮的總時間,求出抬頭看信號燈時,是綠燈的概率為多少即可.【題目詳解】抬頭看信號燈時,是綠燈的概率為.故答案為:.【答案點睛】此題主要考查了概率公式的應用,要熟練掌握,解答此題的關鍵是要明確:(1)隨機事件A的概率P(A)=事件A可能出現的結果數÷所有可能出現的結果數.(2)P(必然事件)=1.(3)P(不可能事件)=2.13、1【答案解析】
先根據勾股定理求得AC的長,從而得到C點坐標,然后根據平移的性質,將C點縱軸代入直線解析式求解即可得到答案.【題目詳解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴AC==1,∴點C的坐標為(﹣1,1).當y=﹣2x﹣6=1時,x=﹣5,∵﹣1﹣(﹣5)=1,∴點C沿x軸向左平移1個單位長度才能落在直線y=﹣2x﹣6上.故答案為1.【答案點睛】本題主要考查平移的性質,解此題的關鍵在于先利用勾股定理求得相關點的坐標,然后根據平移的性質將其縱坐標代入直線函數式求解即可.14、1.【答案解析】連結AD,過D點作DG∥CM,∵,△AOC的面積是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面積是5,△ODF的面積是15×=,∴四邊形AMGF的面積=,∴△BOE的面積=△AOM的面積=×=12,∴△ADC與△BOE的面積和為5+12=1,故答案為:1.15、10°【答案解析】
根據線段的垂直平分線得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度數即可得到答案.【題目詳解】∵點D、E分別是AB、AC邊的垂直平分線與BC的交點,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,故答案為10°【答案點睛】本題主要考查對等腰三角形的性質,三角形的內角和定理,線段的垂直平分線的性質等知識點的理解和掌握,能綜合運用這些性質進行計算是解此題的關鍵.16、1【答案解析】
利用圓周角定理得到∠ADB=90°,再根據切線的性質得∠ABC=90°,然后根據等腰三角形的判定方法得到△ABC為等腰直角三角形,從而得到∠C的度數.【題目詳解】解:∵AB為直徑,∴∠ADB=90°,∵BC為切線,∴AB⊥BC,∴∠ABC=90°,∵AD=CD,∴△ABC為等腰直角三角形,∴∠C=1°.故答案為1.【答案點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.也考查了等腰直角三角形的判定與性質.三、解答題(共8題,共72分)17、(1)y=2x(2)(0,【答案解析】
(1)根據反比例函數比例系數k的幾何意義得出12【題目詳解】(1)∵反比例函數y==kx∴12∵k>0,∴k=2,故反比例函數的解析式為:y=2x(2)作點A關于y軸的對稱點A′,連接A′B,交y軸于點P,則PA+PB最?。蓎=-12x+52∴A(1,2),B(4,12∴A′(﹣1,2),最小值A′B=4+12+1設直線A′B的解析式為y=mx+n,則-m+n=24m+n=12∴直線A′B的解析式為y=-3∴x=0時,y=1710∴P點坐標為(0,1710【答案點睛】本題考查的是反比例函數圖象與一次函數圖象的交點問題以及最短路線問題,解題的關鍵是確定PA+PB最小時,點P的位置,靈活運用數形結合思想求出有關點的坐標和圖象的解析式是解題的關鍵.18、(1)16;(2)平均數是3,眾數是10,中位數是3;(3)1.【答案解析】
(1)根據有7名留守兒童班級有2個,所占的百分比是2.5%,即可求得班級的總個數,再求出有8名留守兒童班級的個數,進而補全條形統計圖;(2)將這組數據按照從小到大排列即可求得統計的這組留守兒童人數數據的平均數、眾數和中位數;(3)利用班級數60乘以(2)中求得的平均數即可.【題目詳解】解:(1)該校的班級數是:2÷2.5%=16(個).則人數是8名的班級數是:16﹣1﹣2﹣6﹣2=5(個).條形統計圖補充如下圖所示:故答案為16;(2)每班的留守兒童的平均數是:(1×6+2×7+5×8+6×10+2×2)÷16=3將這組數據按照從小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.故這組數據的眾數是10,中位數是(8+10)÷2=3.即統計的這組留守兒童人數數據的平均數是3,眾數是10,中位數是3;(3)該鎮小學生中,共有留守兒童60×3=1(名).答:該鎮小學生中共有留守兒童1名.【答案點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.也考查了平均數、中位數和眾數以及用樣本估計總體.19、解:(1)如圖,△A1B1C1即為所求,C1(2,-2).(2)如圖,△A2BC2即為所求,C2(1,0),△A2BC2的面積:10【答案解析】
分析:(1)根據網格結構,找出點A、B、C向下平移4個單位的對應點、、的位置,然后順次連接即可,再根據平面直角坐標系寫出點的坐標;(2)延長BA到使A=AB,延長BC到,使C=BC,然后連接A2C2即可,再根據平面直角坐標系寫出點的坐標,利用△B所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.本題解析:(1)如圖,△A1B1C1即為所求,C1(2,-2)(2)如圖,△B為所求,(1,0),△B的面積:6×4?×2×6?×2×4?×2×4=24?6?4?4=24?14=10,20、【答案解析】分析:先根據分式的混合運算順序和運算法則化簡原式,再由x2-2x-2=0得x2=2x+2=2(x+1),整體代入計算可得.詳解:原式===,∵x2-2x-2=0,∴x2=2x+2=2(x+1),則原式=.點睛:本題主要考查分式的化簡求值,解題的關鍵是掌握分式的混合運算順序和運算法則.21、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【答案解析】測試卷分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應角相等∠OAF=∠OCF,再根據切線的性質得出∠OCF=90°,證出∠OAF=90°,即可得出結論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據垂徑定理得出AC=2AE.測試卷解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點:1.切線的判定與性質;2.勾股定理;3.相似三角形的判定與性質.22、1【答案解析】
原式第一項利用乘方法則計算,第二項利用特殊角的三角函數值計算,第三項利用零指數冪法則計算,最后一項利用絕對值的代數意義化簡即可得到結果.【題目詳解】解:原式=1﹣1×22+1+2=1﹣2+1+2【答案點睛】此題考查了含有特殊角的三角函數值的運算,熟練掌握各運算法則是解題的關鍵.23、(1)yB=-0.2x2+1.6x(2)一次函數,yA=0.4x(3)該企業投資A產品12萬元,投資B產品3萬元,可獲得最大利潤7.8萬元【答案解析】
(1)用待定系數法將坐標(2,2.4)(4,3.2)代入函數關系式yB=ax2+bx求解即可;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 買賣合同房屋買賣協議
- 小區綠化環保工程施工協議
- 2025短期用工合同范本
- 2025項目經理勞動合同勞動合同范本
- 現代管理學重要題型試題及答案
- 2025計算機設備采購合同范本 計算機設備采購合同(年度)
- 2025竹林經營合同
- 行政預算與控制分析試題及答案
- 2025建筑工程監理合同范本
- 公文處理中的文化適宜性分析試題及答案
- 思政課社會實踐報告1500字6篇
- 常暗之廂(7規則-簡體修正)
- GB∕T 25119-2021 軌道交通 機車車輛電子裝置
- 電池PCBA規格書
- 機械零件加工驗收檢驗記錄(共2頁)
- 機械加工切削全參數推薦表
- 終端塔基礎預偏值(抬高值)計算表格
- 海外醫療服務委托合同協議書范本模板
- (完整版)研究者手冊模板
- 菲林檢驗及管理辦法
- 磁芯參數對照表
評論
0/150
提交評論