


版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.2.若集合,,則A. B. C. D.3.根據最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關4.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.5.公比為2的等比數列中存在兩項,,滿足,則的最小值為()A. B. C. D.6.若直線的傾斜角為,則的值為()A. B. C. D.7.已知函數,其中,若恒成立,則函數的單調遞增區間為()A. B.C. D.8.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設小王和外賣小哥都在12:00~12:10之間隨機到達小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.9.已知復數滿足,則的最大值為()A. B. C. D.610.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內切 B.相交 C.外切 D.相離11.三棱錐中,側棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.12.中國古代中的“禮、樂、射、御、書、數”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數”,指數學.某校國學社團開展“六藝”課程講座活動,每藝安排一節,連排六節,一天課程講座排課有如下要求:“數”必須排在第三節,且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種二、填空題:本題共4小題,每小題5分,共20分。13.已知圓C:經過拋物線E:的焦點,則拋物線E的準線與圓C相交所得弦長是__________.14.為了了解一批產品的長度(單位:毫米)情況,現抽取容量為400的樣本進行檢測,如圖是檢測結果的頻率分布直方圖,根據產品標準,單件產品長度在區間的一等品,在區間和的為二等品,其余均為三等品,則樣本中三等品的件數為__________.15.內角,,的對邊分別為,,,若,則__________.16.(5分)已知曲線的方程為,其圖象經過點,則曲線在點處的切線方程是____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知都是各項不為零的數列,且滿足其中是數列的前項和,是公差為的等差數列.(1)若數列是常數列,,,求數列的通項公式;(2)若是不為零的常數),求證:數列是等差數列;(3)若(為常數,),.求證:對任意的恒成立.18.(12分)在平面直角坐標系中,直線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)若射線與和分別交于點,求.19.(12分)已知不等式對于任意的恒成立.(1)求實數m的取值范圍;(2)若m的最大值為M,且正實數a,b,c滿足.求證.20.(12分)以平面直角坐標系的原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,已知曲線,曲線(為參數),求曲線交點的直角坐標.21.(12分)已知橢圓:(),點是的左頂點,點為上一點,離心率.(1)求橢圓的方程;(2)設過點的直線與的另一個交點為(異于點),是否存在直線,使得以為直徑的圓經過點,若存在,求出直線的方程;若不存在,說明理由.22.(10分)某工廠生產某種電子產品,每件產品不合格的概率均為,現工廠為提高產品聲譽,要求在交付用戶前每件產品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產品,且每件產品檢驗合格與否相互獨立.若每件產品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產品每個一組進行分組檢驗,如果某一組產品檢驗合格,則說明該組內產品均合格,若檢驗不合格,則說明該組內有不合格產品,再對該組內每一件產品單獨進行檢驗,如此,每一組產品只需檢驗次或次.設該工廠生產件該產品,記每件產品的平均檢驗次數為.(1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數越少;(ii)當時,求使該方案最合理時的值及件該產品的平均檢驗次數.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【答案解析】
利用平面向量的概念、平面向量的加法、減法、數乘運算的幾何意義,便可解決問題.【題目詳解】解:.故選:A【答案點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于基礎題.2.C【答案解析】
解一元次二次不等式得或,利用集合的交集運算求得.【題目詳解】因為或,,所以,故選C.【答案點睛】本題考查集合的交運算,屬于容易題.3.D【答案解析】
對每一個選項逐一分析判斷得解.【題目詳解】回歸直線必過樣本數據中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.【答案點睛】本題主要考查線性回歸方程的性質,意在考查學生對該知識的理解掌握水平和分析推理能力.4.B【答案解析】
直線的傾斜角為,易得.設雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.5.D【答案解析】
根據已知條件和等比數列的通項公式,求出關系,即可求解.【題目詳解】,當時,,當時,,當時,,當時,,當時,,當時,,最小值為.故選:D.【答案點睛】本題考查等比數列通項公式,注意為正整數,如用基本不等式要注意能否取到等號,屬于基礎題.6.B【答案解析】
根據題意可得:,所求式子利用二倍角的正弦函數公式化簡,再利用同角三角函數間的基本關系弦化切后,將代入計算即可求出值.【題目詳解】由于直線的傾斜角為,所以,則故答案選B【答案點睛】本題考查二倍角的正弦函數公式,同角三角函數間的基本關系,以及直線傾斜角與斜率之間的關系,熟練掌握公式是解本題的關鍵.7.A【答案解析】
,從而可得,,再解不等式即可.【題目詳解】由已知,,所以,,由,解得,.故選:A.【答案點睛】本題考查求正弦型函數的單調區間,涉及到恒成立問題,考查學生轉化與化歸的思想,是一道中檔題.8.C【答案解析】
設出兩人到達小王的時間,根據題意列出不等式組,利用幾何概型計算公式進行求解即可.【題目詳解】設小王和外賣小哥到達小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標系內,如圖所示:圖中陰影部分表示該不等式組的所表示的平面區域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C【答案點睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區域,考查了數學運算能力.9.B【答案解析】
設,,利用復數幾何意義計算.【題目詳解】設,由已知,,所以點在單位圓上,而,表示點到的距離,故.故選:B.【答案點睛】本題考查求復數模的最大值,其實本題可以利用不等式來解決.10.B【答案解析】化簡圓M:x2+(y-a)2=a又N(1,1),r11.B【答案解析】由題,側棱底面,,,,則根據余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內接多面體,熟練掌握球的半徑公式是解答的關鍵.12.C【答案解析】
根據“數”排在第三節,則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【題目詳解】由題意,“數”排在第三節,則“射”和“御”兩門課程相鄰時,可排在第1節和第2節或第4節和第5節或第5節和第6節,有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【答案點睛】本題主要考查了排列、組合的應用,其中解答中認真審題,根據題設條件,先排列有限制條件的元素是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
求出拋物線的焦點坐標,代入圓的方程,求出的值,再求出準線方程,利用點到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進而求出弦長.【題目詳解】拋物線E:的準線為,焦點為(0,1),把焦點的坐標代入圓的方程中,得,所以圓心的坐標為,半徑為5,則圓心到準線的距離為1,所以弦長.【答案點睛】本題考查了拋物線的準線、圓的弦長公式.14.100.【答案解析】分析:根據頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數.詳解:由題意得,三等品的長度在區間,和內,根據頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數為.點睛:頻率分布直方圖的縱坐標為,因此每一個小矩形的面積表示樣本個體落在該區間內的頻率,把小矩形的高視為頻率時常犯的錯誤.15.【答案解析】∵,∴,即,∴,∴.16.【答案解析】
依題意,將點的坐標代入曲線的方程中,解得.由,得,則曲線在點處切線的斜率,所以在點處的切線方程是,即.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)詳見解析;(3)詳見解析.【答案解析】
(1)根據,可求得,再根據是常數列代入根據通項與前項和的關系求解即可.(2)取,并結合通項與前項和的關系可求得再根據化簡可得,代入化簡即可知,再證明也成立即可.(3)由(2)當時,,代入所給的條件化簡可得,進而證明可得,即數列是等比數列.繼而求得,再根據作商法證明即可.【題目詳解】解:.是各項不為零的常數列,則,則由,及得,當時,,兩式作差,可得.當時,滿足上式,則;證明:,當時,,兩式相減得:即.即.又,,即.當時,,兩式相減得:.數列從第二項起是公差為的等差數列.又當時,由得,當時,由,得.故數列是公差為的等差數列;證明:由,當時,,即,,,即,即,當時,即.故從第二項起數列是等比數列,當時,..另外,由已知條件可得,又,,因而.令,則.故對任意的恒成立.【答案點睛】本題主要考查了等差等比數列的綜合運用,需要熟練運用通項與前項和的關系分析數列的遞推公式繼而求解通項公式或證明等差數列等.同時也考查了數列中的不等式證明等,需要根據題意分析數列為等比數列并求出通項,再利用作商法證明.屬于難題.18.(1):;:.(2)【答案解析】
(1)由可得,由,消去參數,可得直線的普通方程為.由可得,將,代入上式,可得,所以曲線的直角坐標方程為.(2)由(1)得,的普通方程為,將其化為極坐標方程可得,當時,,,所以.19.(1)(2)證明見解析【答案解析】
(1)法一:,,得,則,由此可得答案;法二:由題意,令,易知是偶函數,且時為增函數,由此可得出答案;(2)由(1)知,,即,結合“1”的代換,利用基本不等式即可證明結論.【題目詳解】解:(1)法一:(當且僅當時取等號),又(當且僅當時取等號),所以(當且僅當時取等號),由題意得,則,解得,故的取值范圍是;法二:因為對于任意恒有成立,即,令,易知是偶函數,且時為增函數,所以,即,則,解得,故的取值范圍是;(2)由(1)知,,即,∴,故不等式成立.【答案點睛】本題主要考查絕對值不等式的恒成立問題,考查基本不等式的應用,屬于中檔題.20.【答案解析】
利用極坐標方程與普通方程、參數方程間的互化公式化簡即可.【題目詳解】因為,所以,所以曲線的直角坐標方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點坐標為.【答案點睛】本題考查極坐標方程與普通方程,參數方程與普通方程間的互化,考查學生的計算能力,是一道容易題.21.(1);(2)存在,【答案解析】
(1)把點代入橢圓C的方程,再結合離心率,可得a,b,c的關系,可得橢圓的方程;(2)設出直線的方程,代入橢圓,運用韋達定理可求得點的坐標,再由,可求得直線的方程,要注意檢驗直線是否和橢圓有兩個交點.【題目詳解】(1)由題可得∴,所以橢圓的方程(2)由題知,設,直線的斜率存在設為,則與橢圓聯立得,,∴,,∴若以為直徑的圓經過點,則,∴,化簡得,∴,解得或因為與不重合,所以舍.所以直線的方程為.【答案點睛】本題考查橢圓的簡單性質,考查直線與橢圓位置關系的應用,考查了向量的數量積的運用,屬于中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 忻州師范學院《體育學科通識閱讀與寫作》2023-2024學年第二學期期末試卷
- 新疆維吾爾自治區阿克蘇地區庫車縣烏尊鎮中學2025年3月高三年級綜合模擬測試生物試題含解析
- 江蘇省淮安市淮安區達標名校2025屆初三下學期期末教學質量檢測試題試卷生物試題含解析
- 四川文化傳媒職業學院《商務英語基礎》2023-2024學年第一學期期末試卷
- 永州職業技術學院《汽輪機原理及設備》2023-2024學年第一學期期末試卷
- 山東省濟南歷下區重點名校2024-2025學年初三化學試題下學期一模預考試題含解析
- 廈門演藝職業學院《食品質量檢測技術》2023-2024學年第二學期期末試卷
- 山東臨清2025屆初三數學試題模擬試卷(一)試題含解析
- 山西省運城市稷山縣2025屆初三下學期5月考試卷化學試題試卷含解析
- 威海職業學院《血液流變學與人體健康》2023-2024學年第一學期期末試卷
- 導游知識培訓課件
- 眼科“一科一品”特色護理服務
- 銀行內控案防警示教育
- 初中勞動測試題及答案
- 基因指導蛋白質的合成課件-高一下學期生物人教版必修22
- 2024-2025學年湖南省長沙市八年級(上)期末物理試卷(含解析)
- 西師大版小學五年級數學(下)期中測試題(1-4單元)(2)(含答案)
- 2025-2030中國鍍鋅鋼板行業市場發展趨勢與前景展望戰略研究報告
- 大模型備案-落實算法安全主體責任基本情況
- 2025《四川省建設工程施工總包合同》示范文本
- 2025年遼寧省沈陽市和平區九年級中考零模數學試卷(原卷版+解析版)
評論
0/150
提交評論