


版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽亳州花溝中學2023年中考數學模擬預測試卷注意事項1.考生要認真填寫考場號和座位序號。2.測試卷所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列天氣預報中的圖標,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.2.下列“慢行通過,注意危險,禁止行人通行,禁止非機動車通行”四個交通標志圖(黑白陰影圖片)中為軸對稱圖形的是()A. B. C. D.3.若關于x的一元二次方程(k﹣1)x2+2x﹣2=0有兩個不相等的實數根,則k的取值范圍是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠14.如圖1,點F從菱形ABCD的頂點A出發,沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為()A. B.2 C. D.25.若式子在實數范圍內有意義,則x的取值范圍是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣16.cos60°的值等于()A.1 B. C. D.7.如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為()A. B. C.5 D.8.明明和亮亮都在同一直道A、B兩地間做勻速往返走鍛煉明明的速度小于亮亮的速度忽略掉頭等時間明明從A地出發,同時亮亮從B地出發圖中的折線段表示從開始到第二次相遇止,兩人之間的距離米與行走時間分的函數關系的圖象,則A.明明的速度是80米分 B.第二次相遇時距離B地800米C.出發25分時兩人第一次相遇 D.出發35分時兩人相距2000米9.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°10.如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個,錯誤的選法是()A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC11.如圖,下列圖形都是由面積為1的正方形按一定的規律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,…,按此規律.則第(6)個圖形中面積為1的正方形的個數為()A.20 B.27 C.35 D.4012.菱形ABCD中,對角線AC、BD相交于點O,H為AD邊中點,菱形ABCD的周長為28,則OH的長等于()A.3.5 B.4 C.7 D.14二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算tan260°﹣2sin30°﹣cos45°的結果為_____.14.A、B兩地相距20km,甲乙兩人沿同一條路線從A地到B地.甲先出發,勻速行駛,甲出發1小時后乙再出發,乙以2km/h的速度度勻速行駛1小時后提高速度并繼續勻速行駛,結果比甲提前到達.甲、乙兩人離開A地的距離y(km)與時間t(h)的關系如圖所示,則甲出發_____小時后和乙相遇.15.如圖,點O(0,0),B(0,1)是正方形OBB1C的兩個頂點,以對角線OB1為一邊作正方形OB1B2C1,再以正方形OB1B2C1的對角線OB2為一邊作正方形OB2B3C2,……,依次下去.則點B6的坐標____________.16.某數學興趣小組在研究下列運算流程圖時發現,取某個實數范圍內的x作為輸入值,則永遠不會有輸出值,這個數學興趣小組所發現的實數x的取值范圍是_____.17.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.18.一組數據7,9,8,7,9,9,8的中位數是__________三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)北京時間2019年3月10日0時28分,我國在西昌衛星發射中心用長征三號乙運載火箭,成功將中星衛星發射升空,衛星進入預定軌道.如圖,火星從地面處發射,當火箭達到點時,從位于地面雷達站處測得的距離是,仰角為;1秒后火箭到達點,測得的仰角為.(參考數據:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)(Ⅰ)求發射臺與雷達站之間的距離;(Ⅱ)求這枚火箭從到的平均速度是多少(結果精確到0.01)?20.(6分)某中學開學初到商場購買A、B兩種品牌的足球,購買A種品牌的足球20個,B種品牌的足球30個,共花費4600元,已知購買4個B種品牌的足球與購買5個A種品牌的足球費用相同.(1)求購買一個A種品牌、一個B種品牌的足球各需多少元.(2)學校為了響應“足球進校園”的號召,決定再次購進A、B兩種品牌足球共42個,正好趕上商場對商品價格進行調整,A品牌足球售價比第一次購買時提高5元,B品牌足球按第一次購買時售價的9折出售,如果學校此次購買A、B兩種品牌足球的總費用不超過第一次花費的80%,且保證這次購買的B種品牌足球不少于20個,則這次學校有哪幾種購買方案?(3)請你求出學校在第二次購買活動中最多需要多少資金?21.(6分)商場某種商品平均每天可銷售30件,每件盈利50元,為了盡快減少庫存,商場決定采取適當的降價措施.經調査發現,每件商品每降價1元,商場平均每天可多售出2件.若某天該商品每件降價3元,當天可獲利多少元?設每件商品降價x元,則商場日銷售量增加____件,每件商品,盈利______元(用含x的代數式表示);在上述銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2000元?22.(8分)下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對應值,(表格中的符號“…”表示該項數據已丟失)x﹣101ax2……1ax2+bx+c72…(1)求拋物線y=ax2+bx+c的表達式(2)拋物線y=ax2+bx+c的頂點為D,與y軸的交點為A,點M是拋物線對稱軸上一點,直線AM交對稱軸右側的拋物線于點B,當△ADM與△BDM的面積比為2:3時,求B點坐標;(3)在(2)的條件下,設線段BD與x軸交于點C,試寫出∠BAD和∠DCO的數量關系,并說明理由.23.(8分)為了落實國務院的指示精神,某地方政府出臺了一系列“三農”優惠政策,使農民收入大幅度增加.某農戶生產經銷一種農產品,已知這種產品的成本價為每千克20元,市場調查發現,該產品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:y=﹣2x+1.設這種產品每天的銷售利潤為w元.求w與x之間的函數關系式.該產品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?如果物價部門規定這種產品的銷售價不高于每千克28元,該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克多少元?24.(10分)先化簡代數式,再從﹣1,0,3中選擇一個合適的a的值代入求值.25.(10分)如圖,已知平行四邊形ABCD,將這個四邊形折疊,使得點A和點C重合,請你用尺規做出折痕所在的直線。(保留作圖痕跡,不寫做法)26.(12分)如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C.求拋物線y=ax2+2x+c的解析式:;點D為拋物線上對稱軸右側、x軸上方一點,DE⊥x軸于點E,DF∥AC交拋物線對稱軸于點F,求DE+DF的最大值;①在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;②點Q在拋物線對稱軸上,其縱坐標為t,請直接寫出△ACQ為銳角三角形時t的取值范圍.27.(12分)已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.(1)求證:四邊形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的長.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【答案解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】解:A、是軸對稱圖形,也是中心對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不合題意;D、不是軸對稱圖形,不是中心對稱圖形,不合題意.故選:A.【答案點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.2、B【答案解析】
根據軸對稱圖形的概念對各選項分析判斷即可得出答案.【題目詳解】A.不是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項正確;C.不是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項錯誤.故選B.3、C【答案解析】
根據題意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故選C【答案點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac,關鍵是熟練掌握:當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.4、C【答案解析】
通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應用兩次勾股定理分別求BE和a.【題目詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm1..∴AD=a.∴DE?AD=a.∴DE=1.當點F從D到B時,用s.∴BD=.Rt△DBE中,BE=,∵四邊形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故選C.【答案點睛】本題綜合考查了菱形性質和一次函數圖象性質,解答過程中要注意函數圖象變化與動點位置之間的關系.5、A【答案解析】
直接利用二次根式有意義的條件分析得出答案.【題目詳解】∵式子在實數范圍內有意義,∴x﹣1>0,解得:x>1.故選:A.【答案點睛】此題主要考查了二次根式有意義的條件,正確把握定義是解題關鍵.6、A【答案解析】
根據特殊角的三角函數值直接得出結果.【題目詳解】解:cos60°=故選A.【答案點睛】識記特殊角的三角函數值是解題的關鍵.7、D【答案解析】解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE就是所求的最短距離.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值為.故選D.8、B【答案解析】
C、由二者第二次相遇的時間結合兩次相遇分別走過的路程,即可得出第一次相遇的時間,進而得出C選項錯誤;A、當時,出現拐點,顯然此時亮亮到達A地,利用速度路程時間可求出亮亮的速度及兩人的速度和,二者做差后可得出明明的速度,進而得出A選項錯誤;B、根據第二次相遇時距離B地的距離明明的速度第二次相遇的時間、B兩地間的距離,即可求出第二次相遇時距離B地800米,B選項正確;D、觀察函數圖象,可知:出發35分鐘時亮亮到達A地,根據出發35分鐘時兩人間的距離明明的速度出發時間,即可求出出發35分鐘時兩人間的距離為2100米,D選項錯誤.【題目詳解】解:第一次相遇兩人共走了2800米,第二次相遇兩人共走了米,且二者速度不變,
,
出發20分時兩人第一次相遇,C選項錯誤;
亮亮的速度為米分,
兩人的速度和為米分,
明明的速度為米分,A選項錯誤;
第二次相遇時距離B地距離為米,B選項正確;
出發35分鐘時兩人間的距離為米,D選項錯誤.
故選:B.【答案點睛】本題考查了一次函數的應用,觀察函數圖象,逐一分析四個選項的正誤是解題的關鍵.9、B【答案解析】
先由平行線性質得出∠ACD與∠BAC互補,并根據已知∠ACD=40°計算出∠BAC的度數,再根據角平分線性質求出∠BAE的度數,進而得到∠DEA的度數.【題目詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【答案點睛】本題考查了平行線的性質和角平分線的定義,解題的關鍵是熟練掌握兩直線平行,同旁內角互補.10、D【答案解析】
由全等三角形的判定方法ASA證出△ABD≌△ACD,得出A正確;由全等三角形的判定方法AAS證出△ABD≌△ACD,得出B正確;由全等三角形的判定方法SAS證出△ABD≌△ACD,得出C正確.由全等三角形的判定方法得出D不正確;【題目詳解】A正確;理由:在△ABD和△ACD中,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA);B正確;理由:在△ABD和△ACD中,∵∠1=∠2,∠B=∠C,AD=AD∴△ABD≌△ACD(AAS);C正確;理由:在△ABD和△ACD中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS);D不正確,由這些條件不能判定三角形全等;故選:D.【答案點睛】本題考查了全等三角形的判定方法;三角形全等的判定是中考的熱點,熟練掌握全等三角形的判定方法是解決問題的關鍵.11、B【答案解析】測試卷解析:第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規律,第n個圖形中面積為1的正方形有2+3+4+…+(n+1)=個,則第(6)個圖形中面積為1的正方形的個數為2+3+4+5+6+7=27個.故選B.考點:規律型:圖形變化類.12、A【答案解析】
根據菱形的四條邊都相等求出AB,菱形的對角線互相平分可得OB=OD,然后判斷出OH是△ABD的中位線,再根據三角形的中位線平行于第三邊并且等于第三邊的一半可得OHAB.【題目詳解】∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD.∵H為AD邊中點,∴OH是△ABD的中位線,∴OHAB7=3.1.故選A.【答案點睛】本題考查了菱形的對角線互相平分的性質,三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質與定理是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【答案解析】
分別算三角函數,再化簡即可.【題目詳解】解:原式=-2×-×=1.【答案點睛】本題考查掌握簡單三角函數值,較基礎.14、【答案解析】
由圖象得出解析式后聯立方程組解答即可.【題目詳解】由圖象可得:y甲=4t(0≤t≤5);y乙=;由方程組,解得t=.故答案為.【答案點睛】此題考查一次函數的應用,關鍵是由圖象得出解析式解答.15、(-1,0)【答案解析】根據已知條件由圖中可以得到B1所在的正方形的對角線長為,B2所在的正方形的對角線長為()2,B3所在的正方形的對角線長為()3;B4所在的正方形的對角線長為()4;B5所在的正方形的對角線長為()5;可推出B6所在的正方形的對角線長為()6=1.又因為B6在x軸負半軸,所以B6(-1,0).解:如圖所示∵正方形OBB1C,∴OB1=,B1所在的象限為第一象限;∴OB2=()2,B2在x軸正半軸;∴OB3=()3,B3所在的象限為第四象限;∴OB4=()4,B4在y軸負半軸;∴OB5=()5,B5所在的象限為第三象限;∴OB6=()6=1,B6在x軸負半軸.∴B6(-1,0).故答案為(-1,0).16、【答案解析】
通過找到臨界值解決問題.【題目詳解】由題意知,令3x-1=x,x=,此時無輸出值當x>時,數值越來越大,會有輸出值;當x<時,數值越來越小,不可能大于10,永遠不會有輸出值故x≤,故答案為x≤.【答案點睛】本題考查不等式的性質,解題的關鍵是理解題意,學會找到臨界值解決問題.17、1【答案解析】
根據相似三角形的對應邊的比相等列出比例式,計算即可.【題目詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【答案點睛】本題考查的是相似三角形的性質,掌握相似三角形的對應邊的比相等是解題的關鍵.18、1【答案解析】
將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數.如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數,據此可得.【題目詳解】解:將數據重新排列為7、7、1、1、9、9、9,所以這組數據的中位數為1,故答案為1.【答案點睛】本題主要考查中位數,解題的關鍵是掌握中位數的定義.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(Ⅰ)發射臺與雷達站之間的距離約為;(Ⅱ)這枚火箭從到的平均速度大約是.【答案解析】
(Ⅰ)在Rt△ACD中,根據銳角三角函數的定義,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的長,利用∠ADC的正弦值求出AC的長,進而可得AB的長,即可得答案.【題目詳解】(Ⅰ)在中,,≈0.74,∴.答:發射臺與雷達站之間的距離約為.(Ⅱ)在中,,∴.∵在中,,∴.∴.答:這枚火箭從到的平均速度大約是.【答案點睛】本題考查解直角三角形的應用,熟練掌握銳角三角函數的定義是解題關鍵.20、(1)購買一個A種品牌的足球需要50元,購買一個B種品牌的足球需要80元;(2)有三種方案,具體見解析;(3)3150元.【答案解析】測試卷分析:(1)、設A種品牌足球的單價為x元,B種品牌足球的單價為y元,根據題意列出二元一次方程組,從而求出x和y的值得出答案;(2)、設第二次購買A種足球m個,則購買B種足球(50-m)個,根據題意列出不等式組求出m的取值范圍,從而得出答案;(3)、分別求出第二次購買時足球的單件,然后得出答案.測試卷解析:(1)設A種品牌足球的單價為x元,B種品牌足球的單價為y元,解得(2)設第二次購買A種足球m個,則購買B種足球(50-m)個,解得25≤m≤27∵m為整數∴m=25、26、27(3)∵第二次購買足球時,A種足球單價為50+4=54(元),B種足球單價為80×0.9=72∴當購買B種足球越多時,費用越高此時25×54+25×72=3150(元)21、(1)若某天該商品每件降價3元,當天可獲利1692元;(2)2x;50﹣x.(3)每件商品降價1元時,商場日盈利可達到2000元.【答案解析】
(1)根據“盈利=單件利潤×銷售數量”即可得出結論;
(2)根據“每件商品每降價1元,商場平均每天可多售出2件”結合每件商品降價x元,即可找出日銷售量增加的件數,再根據原來沒見盈利50元,即可得出降價后的每件盈利額;
(3)根據“盈利=單件利潤×銷售數量”即可列出關于x的一元二次方程,解之即可得出x的值,再根據盡快減少庫存即可確定x的值.【題目詳解】(1)當天盈利:(50-3)×(30+2×3)=1692(元).
答:若某天該商品每件降價3元,當天可獲利1692元.
(2)∵每件商品每降價1元,商場平均每天可多售出2件,
∴設每件商品降價x元,則商場日銷售量增加2x件,每件商品,盈利(50-x)元.
故答案為2x;50-x.
(3)根據題意,得:(50-x)×(30+2x)=2000,
整理,得:x2-35x+10=0,
解得:x1=10,x2=1,
∵商城要盡快減少庫存,
∴x=1.
答:每件商品降價1元時,商場日盈利可達到2000元.【答案點睛】考查了一元二次方程的應用,解題的關鍵是根據題意找出數量關系列出一元二次方程(或算式).22、(1)y=x2﹣4x+2;(2)點B的坐標為(5,7);(1)∠BAD和∠DCO互補,理由詳見解析.【答案解析】
(1)由(1,1)在拋物線y=ax2上可求出a值,再由(﹣1,7)、(0,2)在拋物線y=x2+bx+c上可求出b、c的值,此題得解;(2)由△ADM和△BDM同底可得出兩三角形的面積比等于高的比,結合點A的坐標即可求出點B的橫坐標,再利用二次函數圖象上點的坐標特征即可求出點B的坐標;(1)利用二次函數圖象上點的坐標特征可求出A、D的坐標,過點A作AN∥x軸,交BD于點N,則∠AND=∠DCO,根據點B、D的坐標利用待定系數法可求出直線BD的解析式,利用一次函數圖象上點的坐標特征可求出點N的坐標,利用兩點間的距離公式可求出BA、BD、BN的長度,由三者間的關系結合∠ABD=∠NBA,可證出△ABD∽△NBA,根據相似三角形的性質可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互補.【題目詳解】(1)當x=1時,y=ax2=1,解得:a=1;將(﹣1,7)、(0,2)代入y=x2+bx+c,得:,解得:,∴拋物線的表達式為y=x2﹣4x+2;(2)∵△ADM和△BDM同底,且△ADM與△BDM的面積比為2:1,∴點A到拋物線的距離與點B到拋物線的距離比為2:1.∵拋物線y=x2﹣4x+2的對稱軸為直線x=﹣=2,點A的橫坐標為0,∴點B到拋物線的距離為1,∴點B的橫坐標為1+2=5,∴點B的坐標為(5,7).(1)∠BAD和∠DCO互補,理由如下:當x=0時,y=x2﹣4x+2=2,∴點A的坐標為(0,2),∵y=x2﹣4x+2=(x﹣2)2﹣2,∴點D的坐標為(2,﹣2).過點A作AN∥x軸,交BD于點N,則∠AND=∠DCO,如圖所示.設直線BD的表達式為y=mx+n(m≠0),將B(5,7)、D(2,﹣2)代入y=mx+n,,解得:,∴直線BD的表達式為y=1x﹣2.當y=2時,有1x﹣2=2,解得:x=,∴點N的坐標為(,2).∵A(0,2),B(5,7),D(2,﹣2),∴AB=5,BD=1,BN=,∴==.又∵∠ABD=∠NBA,∴△ABD∽△NBA,∴∠ANB=∠DAB.∵∠ANB+∠AND=120°,∴∠DAB+∠DCO=120°,∴∠BAD和∠DCO互補.【答案點睛】本題是二次函數綜合題,考查了待定系數法求二次函數和一次函數解析式、等底三角形面積的關系、二次函數的圖像與性質、相似三角形的判定與性質.熟練掌握待定系數法是解(1)的關鍵;熟練掌握等底三角形面積的關系式解(2)的關鍵;證明△ABD∽△NBA是解(1)的關鍵.23、(1);(2)該產品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤2元;(3)該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克25元.【答案解析】
(1)根據銷售額=銷售量×銷售價單x,列出函數關系式.(2)用配方法將(2)的函數關系式變形,利用二次函數的性質求最大值.(3)把y=150代入(2)的函數關系式中,解一元二次方程求x,根據x的取值范圍求x的值.【題目詳解】解:(1)由題意得:,∴w與x的函數關系式為:.(2),∵﹣2<0,∴當x=30時,w有最大值.w最大值為2.答:該產品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤2元.(3)當w=150時,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.∵3>28,∴x2=3不符合題意,應舍去.答:該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克25元.24、,1【答案解析】
先通分得到,再根據平方差公式和完全平方公式得到,化簡后代入a=3,計算即可得到答案.【題目詳解】原式===,當a=3時(a≠﹣1,0),原式=1.【答案點睛】本題考查代數式的化簡、平方差公式和完全平方公式,解題的關鍵是掌握代數式的化簡、平方差公式和完全平方公式.25、答案見解析【答案解析】
根據軸對稱的性質作出線段AC的垂直平分線即可得.【題目詳解】如圖所示,直線EF即為所求.【答案點睛】本題主要考查作圖-軸對稱變換,解題的關鍵是掌握軸對稱變換的性質和線段中垂線的尺規作圖.26、(1)y=﹣x2+2x+3;(2)DE+DF有最大值為;(3)①存在,P的坐標為(,)或(,);②<t<.【答案解析】
(1)設拋物線解析式為y=a(x+1)(x﹣3),根據系數的關系,即可解答(2)先求出當x=0時,C的坐標,設直線AC的解析式為y=px+q,把A,C的坐標代入即可求出AC的解析式,過D作DG垂直拋物線對稱軸于點G,設D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答(3)①過點C作AC的垂線交拋物線于另一點P1,求出直線PC的解析式,再結合拋物線的解析式可求出P1,過點A作AC的垂線交拋物線于另一點P2,再利用A的坐標求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級下冊yu語試卷及答案
- 苗木經銷網絡協議
- 醫生職業風險管理與責任保險的融合策略
- 2025年企業員工半年工作總結模版
- 區塊鏈技術在教育行業的商業應用
- 風險評估與項目決策的關系
- 健康醫療的大數據挖掘與價值創造
- 傳統節日中的價值觀與情感
- 企業業務透明化的助力區塊鏈技術的實際運用
- 《項目管理實務》課件
- 新能源電動汽車技術簡介
- 天融信運維安全審計系統V3
- 2024年初級社會工作者《社會工作實務(初級)》考試練習題(含答案)
- 教學勇氣:漫步教師心靈
- 醫務人員法律法規知識培訓課件
- 卷料加工中的跑偏與糾偏控制
- 波紋鋼裝配式檢查井通用技術規范
- 財務支出預算表模板
- 心房顫動健康宣教
- 人力資源的5分鐘勞動法
- DL-T 5850-2021 電氣裝置安裝工程 高壓電器施工及驗收規范
評論
0/150
提交評論