




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第六章一階電路§6-1分解方法在動態電路分析中的運用§6-2零狀態響應§6-3階躍響應沖激響應§6-4零輸入響應§6-5線性動態電路的疊加定理§6-6三要素法§6-7瞬態和穩態§6-8正弦激勵的過渡過程和穩態§6-1分解方法在動態電路分析中的應用+uc-i含源二端網絡NbC+uc-iaR0+-Cba
uoc+uc-iaG0Cb
isc
求解的步驟:
1、根據給定的初始條件uc(t0)以及t≥t0時的uoc或isc,便可由上述方程解得t≥t0時的uc(t)。
2、求得uc(t)后,便可根據置換定理以電壓源uc(t)去置換電容,使原電路變換成電阻電路。
3、運用電阻電路的分析方法就可解得t≥t0時所有的支路電流和電壓。
對于含電感L的電路,結合初始條件iL(t0)可求得t≥t0的iL(t)。
根據置換定理用電流源iL(t)去置換電感。§6-2零狀態響應+uc-icaR+-Cb
us+-
U0
u1+-+aR+-Cb
us+aRCb+-
U0
u1+---=+
在零初始狀態下,僅由電路的輸入所引起的響應稱為零狀態響應。
在零輸入情況下,僅由非零初始狀態所引起的響應稱為零輸入響應。
輸入和非零初始狀態共同作用下的響應稱為全響應。全響應=零狀態響應+零輸入響應+aR+-Cb
us-
us
t
Us設t0=0。+R+-Cb
Us-t=0a
O在t=0+時,uc(0+)=0,uR=Us,這說明電容的電壓是上升的。由于Us是一定的,電容電壓的增長,必然導致電阻電壓的減小,ic減小。
ic減小,電容電壓的變化率減小,即t=0+時最大。到后來US幾乎降落在電容兩端,電阻兩端電壓趨于零,充電電流趨于零,電容如同開路,充電停止。
電容電壓變化趨勢是:起先增長很快,隨著電容電壓的增長,增長的速度越來越慢,最后趨于電源電壓Us,電容充電完畢。
當直流電路中各個元件的電壓和電流都不隨時間變化時,稱電路進入了直流穩態。
電路由一種穩定狀態變化到另一種穩定狀態的中間過程就稱為過渡(暫態)過程。L
在t=0時將開關閉合,
開關閉合后燈的亮度如何變化?與電阻R串聯的燈LR立即亮,并且亮度不變;
與電容C串聯的燈LC立即亮,但亮度逐漸變暗,最后熄滅;
與電感L串聯的燈LL逐漸變亮,然后保持某一亮度不變。
電路產生過渡過程的原因是:(1)電路中含有動態元件;
(2)電路要發生換路。US為t→∞時的電容電壓,即新的穩態值u(∞)
稱為時間常數,單位是秒(s)。
tf(t)=Ke-t/τ百分比tf(t)=Ke-t/τ百分比τ2τ3τ0.368K0.135K0.0498K36.8K13.5K4.98K4τ5τ6τ0.0183K0.00674K0.000912K1.83K0.674K0.0912K
時間常數τ越大,則f(t)下降到同一百分比值所需的時間越長,衰減越慢。
隨著時間的增長,f(t)趨向于零。
理論上講,t=∞時,f(t)才能衰減到零。
實際上當t=5τ時,f(t)已為初始值K的0.674%。
工程上常取t=(3~5)τ作為f(t)消失所需的時間。iC,uctOuCUs
uc到達直流電源所要求的穩態值US,不是即時的,而是需要經歷一段時間的。i
uc(0+)=uc(0-)=0,ic(0-)=0,而ic(0+)=Us/R,即在t=0時,uc是連續的,而ic則是不連續的。
在充電過程中電阻消耗的總能量為與電阻R的大小無關。
充電完畢電容的儲能為
τ=RC
在充電過程中電源提供的能量為滿足能量守恒定律。L+–uLiLR+-
Ust=0
在t=0+時,iL(0+)=0,uR=0,US/R=IS這說明電感的電流是上升的。
由于Us是一定的,電流的增長,電阻的電壓也增長,電感電壓將減小,電流的變化率減小,因此電感電流的上升變得緩慢。
到后來,電流變化率幾乎為0,即幾乎不變,電感兩端電壓也幾乎為0,電感如同短路。這時US幾乎降落在電阻兩端,電流iL=US/R。US為t→∞時的電容電壓,即新的穩態值
電感電路中,電流的新的穩態值為iL(∞)=US/R。
根據對偶關系,iL(t)的特性曲線與uc(t)的一樣,按指數規律增大,最終達到US/R;uL(t)的特性曲線與ic(t)的一樣,按同樣的指數規律衰減,最終衰減為0。
iL(0+)=iL(0-)=0,uL(0-)=0,而uL(0+)=Us,即在t=0時,iL是連續的,而uL則是不連續的。
在直流電源或階躍波作用下電路的零狀態響應,實質上是電路中動態元件的儲能從無到有逐漸增長的過程。
電容電壓或電感電流都是從它的零值開始按指數規律上升到達它的新的穩態值。
上升的快慢取決于時間常數τ=RC或τ=L/R。
當電路到達穩態時,電容相當于開路,而電感相當于短路,據此可確定電容或電感的新的穩態值。零狀態響應中的電容電壓和電感電流是由新的穩態值和時間常數決定,求解時不必再求解微分方程,可直接寫出uc(t)以及i
L(t)。
然后根據置換定理可求出其他各個電壓和電流。
若外加電壓源電壓增大m倍,則零狀態響應也增大m倍,稱為零狀態響應比例性。
例6-1電路如圖所示,開關K在t=0時打開,已知uc(0)=0,求開關打開后的uc(t)、i(t)和ic(t)。R
Ist=0Cici+-
uc
K
解:uc(0)=0,屬于零狀態響應。
到達新的穩態后,電容相當于開路,所以
電路中的電壓和電流都按同一指數規律變化。
即都有相同的指數。
例6-3下圖所示電路在t=0時開關S閉合,求開關閉合后i(t)和iL(t)。US=18V,L=10H,電阻單位為Ω。L+–uL+-151.24abiLi
Us
解:開關閉合后,即t≥0,用戴維南定理將端鈕a、b的含源二端網絡等效為電壓源與電阻的串聯。t=0L+–uL+-R0abiL
UocL+–uL+-151.24abiLi
Us
開關閉合后用電流源代替電感。
列出網孔方程,§6-3階躍響應沖激響應0
t<01
t>0
t
O1稱為單位階躍函數。
ε(t)是奇異函數,t=0時無定義,可取0或1。0t<t01
t>t
0
t
O1
t
0稱為延時單位階躍函數。
單位階躍輸入作用下的零狀態響應定義為單位階躍響應s(t)。
若輸入信號是幅度為A的階躍信號,則零狀態響應為As(t)。
延時單位階躍信號作用下的零狀態響應為s(t-t0),稱為電路的時不變性。
t
O1
t
0
t
O1
t
0T
稱為分段常量信號。矩形脈沖脈沖串=
t
O1
t
0
t
O-1
t
0+
例6-5求下圖所示零狀態RL電路在左圖所示脈沖電壓作用下的電流i(t)。已知L=1H,R=1Ω。L+–uL+-Ri
u(t)
t
OA
t
0
解:u(t)可分解為Aε(t)和-Aε(t-t0)的疊加,則
(1)Aε(t)單獨作用時的零狀態響應為
(2)-Aε(t-t0)單獨作用時的零狀態響應為
例6-6若作用于下圖所示電路的電壓R2
usC+-
u
R1+-已知R1=3Ω,R2=6Ω,C=1/8F。試求u(t),對所有t。
解us(t)可看成由us1(t)=-3V和us2(t)=4ε(t)所組成。
(1)電壓源us1(t)=-3V始終作用于電路,電容相當于開路
(2)電壓源us2(t)=4ε(t)在t≥0時才作用于電路,電路的零狀態響應為R2
usC+-
u
R1+-
例6-7接續例6-5,試求uL(t)。R=1Ω。L+–uL+-Ri
u(t)
解uL(t)=u(t)-Ri(t)
t<0時,
t>0時,??00
稱為沖激函數。
δ(t)對t的積分為ε(t)。
δ(t)=0對所有t≠0。
δ(t-t0)=0對所有t≠t0。
單位沖激輸入作用下的零狀態響應定義為單位沖激響應h(t)。
激勵x→響應y(線性時不變電路中)。=h(t)
例6-8接續例6-5,試由公式
例6-9求RC并聯電路在沖激電流源δ(t)作用下電壓u(t)的單位沖激響應。R
δ(t)C+-
u(t)
解電路中電壓u的單位階躍響應為§6-4零輸入響應+aRCb+-
U0
u1+--
在零輸入情況下,僅由非零初始狀態所引起的響應稱為零輸入響應。
用電壓源U0與初始電壓為零的電容串聯來代替初始電壓不為零的電容。
所求電容電壓uc(t)應是U0與u1(t)的疊加,即a、b兩端的電壓,
u1(t)是在獨立源U0作用下的零狀態響應,所以iC,uCtOiCuCU0-U0/R
零輸入響應是依靠動態元件的初始儲能進行的,當電路中存在著耗能元件R時,有限的初始儲能終將被消耗完,零輸入響應終將為零。
uc(0+)=uc(0-)=U0,ic(0-)=0,而ic(0+)=-Us/R,即在t=0時,uc是連續的,而ic則是不連續的。L+–uL(t)RiL(t)iL(0)=I0RL+–uL(t)iL(t)i1(t)iL(0)
用電流源I0和初始電流為零的電感的并聯來代替初始電流不為零的電感。
i1(t)是在獨立源I0作用下的零狀態響應,所以
不論是RC電路還是RL電路,零輸入響應都是隨時間按指數規律衰減的,這是由于在沒有外施電源的條件下,原有的儲能總是要逐漸衰減到零的。
若初始狀態增大m倍,則零輸入響應也相應地增大m倍,稱為零輸入響應線性或比例性。
例6-10電路如圖所示,已知R1=9Ω、R2=4Ω、R3=8Ω、R4=3Ω、R5=1Ω,Us=10V,C=1F。t=0時開關打開,求uab(t),t≥0。C+-
UsR1R2R3R4R5ab
解(1)求uc(0+)。
(2)求初始值uab(0+)。C+-UsR1R2R3R4R5ab+-
uc(0+)
(3)求穩態值uab(∞)。C+-
UsR1R2R3R4R5abC+-UsR1R2R3R4R5ab+-
uc(0+)
(4)求時間常數τ。C+-
UsR1R2R3R4R5ab
(5)代入,寫出表達式。R0§6-5線性動態電路的疊加原理
線性一階電路的疊加原理包含下述內容:若初始時刻為t=0,則對所有t≥0的時刻,有
(1)全響應=零狀態響應+零輸入響應;
(2)零狀態響應線性;
(3)零輸入響應線性。
例6-12t≥0時RC并聯電路如圖所示,在電流源iS(t)的作用下,若R=1Ω、C=1F,試求響應uC(t),t≥0。若R
iS(t)C+-
u(t)
(1)iS(t)=2A,uC(0)=1V;
(2)iS(t)=3A,uC(0)=1V;
(3)iS(t)=5A,uC(0)=1V,核對所求結果是否為(1)、(2)結果之和。
解(1)零狀態響應
零輸入響應
全響應
(2)零狀態響應
零輸入響應
全響應
(3)零狀態響應
零輸入響應
全響應全響應不等于激勵單獨作用時響應的總和。§6-6三要素法
三要素法是一種求解一階電路的簡便方法。
它可用于求解電路任一變量的零輸入響應和直流作用下的零狀態響應、全響應,不論是狀態變量還是非狀態變量。
在直流一階電路中各處的電壓、電流都是按指數規律變化的,它們都是從各自的初始值開始,逐漸增長或是逐漸衰減到穩態值,且同一電路中各支路電流和電壓的時間常數是相同的。
在分析電路時,只要求得y(0+)、y(∞)和τ這三個要素,就能立即寫出相應的解析表示式。穩態值初始值
用三要素法求解的步驟:
1、求uc(0-)或iL(0-)。
t=0-時電路已處于穩態,用開路置換電容,用短路置換電感;然后利用KCL、KVL、VCR、網孔法、節點法、疊加定理、戴維南定理、歐姆定律、電阻的串并聯等方法求出uc(0-)或iL(0-)。
2、求出待求量的初始值y(0+)。
(1)畫出t=0+時的等效電路:電路已發生換路,電容用us=uc(0+)的電壓源置換或電感用is=iL(0+)的電流源置換。
(2)利用計算復雜電路的方法求出y(0+)。
3、求出新的穩態值y(∞)。
t=∞時電路又達到穩態,用開路置換電容,用短路置換電感;
利用計算復雜電路的方法求出y(∞)。
4、求出時間常數τ。
求出動態元件兩端的戴維南或諾頓等效電路的等效電阻。
時間常數為τ=R0C或τ=L/R0。
5、代入,寫出表達式。
即理想電壓源短路、理想電流源開路時動態元件兩端的等效電阻R0;
例6-15求解右圖(P193例6-3)所示電路的i(t),t≥0。R1=1Ω,R2=5Ω,R3=1.2Ω,R4=4Ω,Us=18V,L=10H。L+–uL+-R1R2R3R4abiLi
Ust=0
解(1)求iL(0-)。
t=(0-),iL(0-)=0。
(2)求初始值i(0+)。L+–uL+-R1R2R3R4abiLi
Us
(3)求穩態值i(∞)。L+–uL+-R1R2R3R4abiLi
Us
(4)求時間常數τ。+-R1R2R3R4abi
UsL+–uL
(5)代入,寫出表達式。R0
例6-16如圖所示電路,t=0時開關由a投向b。試繪出i(t)、iL(t)的波形圖,并寫出解析表達式。假定換路前電路處于穩態。R1=R3=1Ω,R2=2Ω,L=3H。L+–uLR1R2R33VabiLi
3Vt=0
解(1)求iL(0-)。L+–uLR1R2R3aiLi
3V
(2)求初始值。L+–uLR1R2R33VbiLi
iL(0+)=iL(0-)=-1.2A。
iL(0+)
(3)求穩態值。L+–uLR1R2R33VbiLi
iL(∞)
(4)求時間常數。L+–uLR1R2R33VbiLi
(5)代入,寫表達式。R0
例6-17電路如圖所示,已知電流源is=2A,t≥0;is=0,t<0。R1=R2=4Ω,C=0.01F,r=2Ω。求i(t),t≥0。
isC+-
i(t)
uc(t)R1R2
ri+-
解(1)求uc(0+)。
(2)求初始值i(0+)。
isC+-
i(t)
uc(t)R1R2
ri+-
(3)求穩態值i(∞)。
isC+-
i(t)
uc(t)R1R2
ri+-
(4)求時間常數τ。
isC+-
i(t)
uc(t)R1R2
ri+-+-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年銀行從業資格證考試金融產品設計試題及答案
- 銀行從業資格證考試職場能力評估試題及答案
- 理財師備考中的自我驅動力與積極性提升方法試題及答案
- 銀行服務流程優化試題及答案
- 理財師備考全方位技術提升試題及答案
- 強化記憶的特許金融分析師考試試題及答案
- 財務報表分析金融理財師考試試題及答案
- 全能小語種學習方法試題及答案
- 2025年特許金融分析師課程內容特色試題及答案
- 2025年國際金融理財師考試交流互動試題及答案
- 道德與法治項目化學習案例
- GB/T 311.2-2013絕緣配合第2部分:使用導則
- GA 1517-2018金銀珠寶營業場所安全防范要求
- C語言期末考試試題南昌航空大學
- 取消訂單協議模板(5篇)
- 東風天錦5180勾臂式垃圾車的改裝設計
- 浦發銀行個人信用報告異議申請表
- 施工進度計劃網絡圖-練習題知識講解
- 防孤島測試報告
- 按摩常用英語
- midas NFX使用指南(八)
評論
0/150
提交評論