




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.函數在的圖象大致為()A. B.C. D.2.下列關系中,正確的是()A. B.C. D.3.已知函數y=(12)x的圖象與函數y=logax(a>0,A.[?2C.[?84.已知三棱錐的三條棱,,長分別是3、4、5,三條棱,,兩兩垂直,且該棱錐4個頂點都在同一球面上,則這個球的表面積是A B.C. D.都不對5.已知函數則A. B.C. D.6.如果函數在上的圖象是連續不斷的一條曲線,那么“”是“函數在內有零點”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件7.()A. B.C. D.8.國家高度重視青少年視力健康問題,指出要“共同呵護好孩子的眼睛,讓他們擁有一個光明的末來”.某校為了調查學生的視力健康狀況,決定從每班隨機抽取5名學生進行調查.若某班有50名學生,將每一學生從01到50編號,從下面所給的隨機數表的第2行第4列的數開始,每次從左向右選取兩個數字,則選取的第三個號碼為()隨機數表如下:A.13 B.24C.33 D.369.設函數,點,,在的圖像上,且.對于,下列說法正確的是()①一定是鈍角三角形②可能是直角三角形③不可能是等腰三角形③可能是等腰三角形A①③ B.①④C.②③ D.②④10.命題“,是4倍數”的否定為()A.,是4的倍數 B.,不是4的倍數C.,不是4倍數 D.,不是4的倍數二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.設A為圓上一動點,則A到直線的最大距離為________12.已知函數,若存在,使得,則的取值范圍為_____________.13.已知的圖象的對稱軸為_________________14.關于函數f(x)=有如下四個命題:①f(x)的圖象關于y軸對稱②f(x)的圖象關于原點對稱③f(x)的圖象關于直線x=對稱④f(x)的最小值為2其中所有真命題的序號是__________15.若一個集合是另一個集合的子集,則稱兩個集合構成“鯨吞”;對于集合,,若這兩個集合構成“鯨吞”,則的取值為____________三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.已知定義在上的奇函數滿足:①;②對任意的均有;③對任意的,,均有.(1)求的值;(2)證明在上單調遞增;(3)是否存在實數,使得對任意的恒成立?若存在,求出的取值范圍;若不存在,請說明理由.17.已知向量(1)當時,求的值;(2)若為銳角,求的范圍.18.設函數.(1)求關于的不等式的解集;(2)若是偶函數,且,,,求的取值范圍.19.已知,且的最小正周期為.(1)求;(2)當時,求函數的最大值和最小值并求相應的值.20.在平面直角坐標系xOy中,已知圓x2+y2-12x+32=0的圓心為Q,過點P(0,2)且斜率為k的直線l與圓Q相交于不同的兩點A,B,記AB的中點為E(Ⅰ)若AB的長等于,求直線l的方程;(Ⅱ)是否存在常數k,使得OE∥PQ?如果存在,求k值;如果不存在,請說明理由21.已知集合,集合(1)當時,求;(2)當時,求m的取值范圍
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、D【解析】先判斷出函數的奇偶性,然后根據的符號判斷出的大致圖象.【詳解】因為,所以,為奇函數,所以排除A項,又,所以排除B、C兩項,故選:D【點睛】思路點睛:函數圖象的辨識可從以下方面入手:(1)從函數的定義域,判斷圖象的左右位置;從函數的值域,判斷圖象的上下位置(2)從函數的單調性,判斷圖象的變化趨勢;(3)從函數的奇偶性,判斷圖象的對稱性;(4)從函數的特征點,排除不合要求的圖象.2、C【解析】根據自然數集、正整數集、整數集以及有理數集的含義判斷數與集合的關系.【詳解】對于A,,所以A錯誤;對于B,不是整數,所以,所以B錯誤;對于C,,所以C正確;對于D,因為不含任何元素,則,所以D錯誤.故選:C.3、D【解析】由已知中兩函數的圖象交于點P(?由指數函數的性質可知,若x0≥2,則0<y由于x0≥2,所以a>1且4a點睛:本題考查了指數函數與對數函數的應用,其中解答中涉及到指數函數的圖象與性質、對數函數的圖象與性質,以及不等式關系式得求解等知識點的綜合考查,著重考查了學生分析問題和解答問題的能力,本題的解答中熟記指數函數與對數函數的圖象與性質,構造關于a的不等式是解答的關鍵,試題比較基礎,屬于基礎題.4、B【解析】長方體的一個頂點上的三條棱分別為,且它的八個頂點都在同一個球面上,則長方體的對角線就是球的直徑,長方體的對角線為球的半徑為則這個球的表面積為故選點睛:本題考查的是球的體積和表面積以及球內接多面體的知識點.由題意長方體的外接球的直徑就是長方體的對角線,求出長方體的對角線,就是求出球的直徑,然后求出球的表面積即可5、A【解析】,.6、A【解析】由零點存在性定理得出“若,則函數在內有零點”舉反例即可得出正確答案.【詳解】由零點存在性定理可知,若,則函數在內有零點而若函數在內有零點,則不一定成立,比如在區間內有零點,但所以“”是“函數在內有零點”的充分而不必要條件故選:A【點睛】本題主要考查了充分不必要條件的判斷,屬于中檔題.7、D【解析】根據誘導公式以及特殊角的三角函數值,即可容易求得結果.【詳解】因為.故選:D.8、D【解析】隨機數表進行讀數時,確定開始的位置以及位數,逐一往后即可,遇到超出范圍或重復的數字跳過即可.【詳解】根據隨機數表的讀取方法,第2行第4列的數為3,每次從左向右選取兩個數字,所以第一組數字為32,作為第一個號碼;第二組數字58,舍去;第三組數字65,舍去;第四組數字74,舍去;第五組數字13,作為第二個號碼;第六組數字36,作為第三個號碼,所以選取的第三個號碼為36故選:D9、A【解析】結合,得到,所以一定為鈍角三角形,可判定①正確,②錯誤;根據兩點間的距離公式和函數的變化率的不同,得到,可判定③正確,④不正確.【詳解】由題意,函數為單調遞增函數,因為點,,在的圖像上,且,不妨設,可得,則,因為,可得,又由因為,,,,所以,所以所以,所以一定為鈍角三角形,所以①正確,②錯誤;由兩點間的距離公式,可得,根據指數函數和一次函數的變化率,可得點到的變化率小于點到點的變化率不相同,所以,所以不可能為等腰三角形,所以③正確,④不正確.故選:A.10、B【解析】根據特稱量詞命題的否定是全稱量詞命題即可求解【詳解】因為特稱量詞命題的否定是全稱量詞命題,所以命題“,是4的倍數”的否定為“,不是4的倍數”故選:B二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】求出圓心到直線的距離,進而可得結果.【詳解】依題意可知圓心為,半徑為1.則圓心到直線距離,則點直線的最大距離為.故答案:.12、【解析】根據條件作出函數圖象求解出的范圍,利用和換元法將變形為二次函數的形式,從而求解出其取值范圍.【詳解】由解析式得大致圖象如下圖所示:由圖可知:當時且,則令,解得:,,又,,,令,則,,即.故答案為:【點睛】思路點睛:根據分段函數函數值相等關系可將所求式子統一為一個變量表示的函數的形式,進而根據函數值域的求解方法求得結果;易錯點是忽略變量的取值范圍,造成值域求解錯誤.13、【解析】根據誘導公式可得,然后用二倍角公式化簡,進而可求.【詳解】因為所以,故對稱軸為.故答案為:14、②③【解析】利用特殊值法可判斷命題①的正誤;利用函數奇偶性的定義可判斷命題②的正誤;利用對稱性的定義可判斷命題③的正誤;取可判斷命題④的正誤.綜合可得出結論.【詳解】對于命題①,,,則,所以,函數的圖象不關于軸對稱,命題①錯誤;對于命題②,函數的定義域為,定義域關于原點對稱,,所以,函數的圖象關于原點對稱,命題②正確;對于命題③,,,則,所以,函數的圖象關于直線對稱,命題③正確;對于命題④,當時,,則,命題④錯誤.故答案為:②③.【點睛】本題考查正弦型函數的奇偶性、對稱性以及最值的求解,考查推理能力與計算能力,屬于中等題.第ⅠⅠ卷15、0【解析】根據題中定義,結合子集的定義進行求解即可.【詳解】當時,,顯然,符合題意;當時,顯然集合中元素是兩個互為相反數的實數,而集合中的兩個元素不互為相反數,所以集合、之間不存在子集關系,不符合題意,故答案為:三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)0;(2)詳見解析;(3)存在,.【解析】(1)利用賦值法即求;(2)利用單調性的定義,由題可得,結合條件可得,即證;(3)利用賦值法可求,結合函數的單調性可把問題轉化為,是否存在實數,使得或在恒成立,然后利用參變分離法即求.【小問1詳解】∵對任意的,,均有,令,則,∴;【小問2詳解】,且,則又,對任意的均有,∴,∴∴函數在上單調遞增.【小問3詳解】∵函數為奇函數且在上單調遞增,∴函數在上單調遞增,令,可得,令,可得,又,∴,又函數在上單調遞增,在上單調遞增,∴由,可得或,即是否存在實數,使得或對任意的恒成立,令,則,則對于恒成立等價于在恒成立,即在恒成立,又當時,,故不存在實數,使得恒成立,對于對任意的恒成立,等價于在恒成立,由,可得在恒成立,又,在上單調遞減,∴,綜上可得,存在使得對任意的恒成立.【點睛】關鍵點點睛:本題第二問的關鍵是配湊,然后利用條件可證;第三問的關鍵是轉化為否存在實數,使得或在恒成立,再利用參變分離法解決.17、(1)x或x=﹣2;(2)x>﹣2且x【解析】(1)利用向量的數量積為零列出方程求解即可.(2)根據題意得?0且,不同向,列出不等式,即可求出結果【詳解】(1)2(1+2x,4),2(2﹣x,3),(2)⊥(2),可得(2x+1)(2﹣x)+3×4=0即﹣2x2+3x+14=0.解得:x或x=﹣2(2)若,為銳角,則?0且,不同向?x+2>0,∴x>﹣2,當x時,,同向∴x>﹣2且x【點睛】本題主要考查向量垂直的坐標表示,考查向量夾角為銳角的充要條件,意在考查學生對這些知識的掌握水平和分析推理能力.18、(1)當時,;當時,;當時,(2)【解析】(1)分類討論,解含參一元二次不等式;(2)先根據是偶函數,得到,再,,轉化為在上的最小值小于在上的最小值,進行求解.【小問1詳解】,令,解得或當時,,的解集是;當時,,的解集是;當時,,的解集是.【小問2詳解】因為是偶函數,所以,解得:.設函數,因為在上單調遞增,所以.設函數.當時,在上單調遞增,則,故,即,結合得:;當時,在上單調遞減,則,故,即,結合得:綜上,的取值范圍為19、(1);(2)時,,時,.【解析】(1)化簡即得函數,再根據函數的周期求出,即得解;(2)由題得,再根據三角函數的圖像和性質即得解.【詳解】解:(1)函數,因為,所以,解得,所以(2)當時,,當,即時,,當,即時,,所以,時,,時,.20、(Ⅰ)y=-+2或y=-x+2;(Ⅱ)不存在實數滿足題意【解析】(Ⅰ)待定系數法,設出直線,再根據已知條件列式,解出即可;(Ⅱ)假設存在常數,將轉化斜率相等,聯立直線與圓,根據韋達定理,由直線與圓相交可求得范圍.由斜率相等可求得的值,從而可判斷結論【詳解】(Ⅰ)圓Q的方程可寫成(x-6)2+y2=4,所以圓心為Q(6,0)設過P(0,2)且斜率為k的直線方程為y=kx+2∵|AB|=,∴圓心Q到直線l的距離d==,∴=,即22k2+15k+2=0,解得k=-或k=-所以,滿足題意的直線l方程為y=-+2或y=-x+2(Ⅱ)將直線l的方程y=x+2代入圓方程得x2+(kx+2)2-12x+32=0整理得(1+k2)x2+4(k-3)x+36=0.①直線與圓交于兩個不同的點A,B等價于△=[4(k-3)2]-4×36(1+k2)=42(-8k2-6k)>0,解得-<k<0,即k的取值范圍為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 童車類產品安全性能提升技術考核試卷
- 生活初三語文作文600字
- 硅冶煉廠的工藝流程設計考核試卷
- 橡膠制品的品牌形象與品牌推廣策略研究考核試卷
- 玻璃纖維增強塑料的機械性能優化設計考核試卷
- 家電配件的精密加工與測量技術考核試卷
- 小學一年級數學20以內進位、退位加減法口算
- 造口并發癥及處理 2
- 四川成都實驗外國語2023-2024學年高一下學期期中考試數學試題【含答案】
- 血液透析及并發癥護理 2
- 2024年北京大學強基計劃物理試題(附答案)
- TCUWA40055-2023排水管道工程自密實回填材料應用技術規程
- 糖尿病病人的麻醉管理
- 大型活動策劃與管理第九章 大型活動知識產權保護
- 2024年新課標培訓2022年小學英語新課標學習培訓課件
- 煤礦反三違認定培訓課件
- 2024年安全標志標識標準圖冊
- 航空航天知識講座學習課件
- 浙江省嘉興市2024-2025學年高一化學下學期期末考試試題含解析
- 應急管理概論教學課件
- 7《不甘屈辱 奮勇抗爭》(教學設計)-2023-2024學年道德與法治五年級下冊統編版
評論
0/150
提交評論