甘肅省靜寧縣第三中學2022年中考數學最后一模試卷含解析_第1頁
甘肅省靜寧縣第三中學2022年中考數學最后一模試卷含解析_第2頁
甘肅省靜寧縣第三中學2022年中考數學最后一模試卷含解析_第3頁
甘肅省靜寧縣第三中學2022年中考數學最后一模試卷含解析_第4頁
甘肅省靜寧縣第三中學2022年中考數學最后一模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.的化簡結果為A.3 B. C. D.92.若x=-2是關于x的一元二次方程x2+ax-a2=0的一個根,則a的值為()A.-1或4 B.-1或-4C.1或-4 D.1或43.如圖的幾何體中,主視圖是中心對稱圖形的是()A. B. C. D.4.如圖所示,某公司有三個住宅區,A、B、C各區分別住有職工30人,15人,10人,且這三點在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設一個??奎c,為使所有的人步行到??奎c的路程之和最小,那么該停靠點的位置應設在()A.點A B.點B C.A,B之間 D.B,C之間5.若一個圓錐的底面半徑為3cm,母線長為5cm,則這個圓錐的全面積為()A.15πcm2 B.24πcm2 C.39πcm2 D.48πcm26.在一次中學生田徑運動會上,參加跳遠的名運動員的成績如下表所示:成績(米)人數則這名運動員成績的中位數、眾數分別是()A. B. C., D.7.如圖,矩形ABOC的頂點A的坐標為(﹣4,5),D是OB的中點,E是OC上的一點,當△ADE的周長最小時,點E的坐標是()A.(0,) B.(0,) C.(0,2) D.(0,)8.甲、乙兩人參加射擊比賽,每人射擊五次,命中的環數如下表:次序第一次第二次第三次第四次第五次甲命中的環數(環)67868乙命中的環數(環)510767根據以上數據,下列說法正確的是()A.甲的平均成績大于乙 B.甲、乙成績的中位數不同C.甲、乙成績的眾數相同 D.甲的成績更穩定9.估計﹣÷2的運算結果在哪兩個整數之間()A.0和1 B.1和2 C.2和3 D.3和410.如圖,在△ABC中,AB=AC=5,BC=6,點M為BC的中點,MN⊥AC于點N,則MN等于()A.?

B.?

C.?

D.?二、填空題(共7小題,每小題3分,滿分21分)11.計算:____________12.如圖,AB=AC,AD∥BC,若∠BAC=80°,則∠DAC=__________.13.已知點,在二次函數的圖象上,若,則__________.(填“”“”“”)14.已知一次函數y=kx+2k+3的圖象與y軸的交點在y軸的正半軸上,且函數值y隨x的增大而減小,則k所能取到的整數值為________.15.方程的解是_________.16.如圖,MN是⊙O的直徑,MN=4,∠AMN=40°,點B為弧AN的中點,點P是直徑MN上的一個動點,則PA+PB的最小值為_____.17.如圖,點A在反比例函數y=(x>0)的圖像上,過點A作AD⊥y軸于點D,延長AD至點C,使CD=2AD,過點A作AB⊥x軸于點B,連結BC交y軸于點E,若△ABC的面積為6,則k的值為________.三、解答題(共7小題,滿分69分)18.(10分)某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.請結合以上信息解答下列問題:m=;請補全上面的條形統計圖;在圖2中,“乒乓球”所對應扇形的圓心角的度數為;已知該校共有1200名學生,請你估計該校約有名學生最喜愛足球活動.19.(5分)如圖所示,在中,,(1)用尺規在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)(2)連接AP當為多少度時,AP平分.20.(8分)某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統計了這15人某月的銷售量如下:每人銷售件數1800510250210150120人數113532(1)求這15位營銷人員該月銷售量的平均數、中位數和眾數;假設銷售負責人把每位營銷員的月銷售額定為320件,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由.21.(10分)如圖,在⊙O中,AB是直徑,點C是圓上一點,點D是弧BC中點,過點D作⊙O切線DF,連接AC并延長交DF于點E.(1)求證:AE⊥EF;(2)若圓的半徑為5,BD=6求AE的長度.22.(10分)(2017江蘇省常州市)為了解某校學生的課余興趣愛好情況,某調查小組設計了“閱讀”、“打球”、“書法”和“其他”四個選項,用隨機抽樣的方法調查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據調查結果繪制了如下統計圖:根據統計圖所提供的信息,解答下列問題:(1)本次抽樣調查中的樣本容量是;(2)補全條形統計圖;(3)該校共有2000名學生,請根據統計結果估計該校課余興趣愛好為“打球”的學生人數.23.(12分)已知:如圖,在梯形ABCD中,AD∥BC,AB=DC,E是對角線AC上一點,且AC·CE=AD·BC.(1)求證:∠DCA=∠EBC;(2)延長BE交AD于F,求證:AB2=AF·AD.24.(14分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,FC交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:根據二次根式的計算化簡可得:.故選A.考點:二次根式的化簡2、C【解析】試題解析:∵x=-2是關于x的一元二次方程的一個根,

∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,

整理,得(a+2)(a-1)=0,

解得a1=-2,a2=1.

即a的值是1或-2.

故選A.點睛:一元二次方程的解的定義:能使一元二次方程左右兩邊相等的未知數的值是一元二次方程的解.又因為只含有一個未知數的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.3、C【解析】解:球是主視圖是圓,圓是中心對稱圖形,故選C.4、A【解析】

此題為數學知識的應用,由題意設一個??奎c,為使所有的人步行到??奎c的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點間線段最短定理.【詳解】解:①以點A為停靠點,則所有人的路程的和=15×100+10×300=1(米),②以點B為??奎c,則所有人的路程的和=30×100+10×200=5000(米),③以點C為停靠點,則所有人的路程的和=30×300+15×200=12000(米),④當在AB之間??繒r,設??奎c到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤當在BC之間??繒r,設??奎c到B的距離為n,則(0<n<200),則總路程為30(100+n)+15n+10(200﹣n)=5000+35n>1.∴該??奎c的位置應設在點A;故選A.【點睛】此題為數學知識的應用,考查知識點為兩點之間線段最短.5、B【解析】試題分析:底面積是:9πcm1,底面周長是6πcm,則側面積是:×6π×5=15πcm1.則這個圓錐的全面積為:9π+15π=14πcm1.故選B.考點:圓錐的計算.6、D【解析】

根據中位數、眾數的定義即可解決問題.【詳解】解:這些運動員成績的中位數、眾數分別是4.70,4.1.故選:D.【點睛】本題考查中位數、眾數的定義,解題的關鍵是記住中位數、眾數的定義,屬于中考基礎題.7、B【解析】解:作A關于y軸的對稱點A′,連接A′D交y軸于E,則此時,△ADE的周長最?。咚倪呅蜛BOC是矩形,∴AC∥OB,AC=OB.∵A的坐標為(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中點,∴D(﹣2,0).設直線DA′的解析式為y=kx+b,∴,∴,∴直線DA′的解析式為.當x=0時,y=,∴E(0,).故選B.8、D【解析】

根據已知條件中的數據計算出甲、乙的方差,中位數和眾數后,再進行比較即可.【詳解】把甲命中的環數按大小順序排列為:6,6,7,8,8,故中位數為7;把乙命中的環數按大小順序排列為:5,6,7,7,10,故中位數為7;∴甲、乙成績的中位數相同,故選項B錯誤;根據表格中數據可知,甲的眾數是8環,乙的眾數是7環,∴甲、乙成績的眾數不同,故選項C錯誤;甲命中的環數的平均數為:x甲乙命中的環數的平均數為:x乙∴甲的平均數等于乙的平均數,故選項A錯誤;甲的方差S甲2=15[(6?7)2+(7?7)2+(8?7)2+(6?7)2乙的方差=15[(5?7)2+(10?7)2+(7?7)2+(6?7)2+(7?7)2因為2.8>0.8,所以甲的穩定性大,故選項D正確.故選D.【點睛】本題考查方差的意義.方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩定;反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.同時還考查了眾數的中位數的求法.9、D【解析】

先估算出的大致范圍,然后再計算出÷2的大小,從而得到問題的答案.【詳解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故選D.【點睛】本題主要考查的是二次根式的混合運算,估算無理數的大小,利用夾逼法估算出的大小是解題的關鍵.10、A【解析】

連接AM,根據等腰三角形三線合一的性質得到AM⊥BC,根據勾股定理求得AM的長,再根據在直角三角形的面積公式即可求得MN的長.【詳解】解:連接AM,

∵AB=AC,點M為BC中點,

∴AM⊥CM(三線合一),BM=CM,

∵AB=AC=5,BC=6,

∴BM=CM=3,

在Rt△ABM中,AB=5,BM=3,∴根據勾股定理得:AM===4,

又S△AMC=MN?AC=AM?MC,∴MN==.

故選A.【點睛】綜合運用等腰三角形的三線合一,勾股定理.特別注意結論:直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊.二、填空題(共7小題,每小題3分,滿分21分)11、y【解析】

根據冪的乘方和同底數冪相除的法則即可解答.【詳解】【點睛】本題考查了冪的乘方和同底數冪相除,熟練掌握:冪的乘方,底數不變,指數相乘的法則及同底數冪相除,底數不變,指數相減是關鍵.12、50°【解析】

根據等腰三角形頂角度數,可求出每個底角,然后根據兩直線平行,內錯角相等解答.【詳解】解:∵AB=AC,∠BAC=80°,∴∠B=∠C=(180°﹣80°)÷2=50°;∵AD∥BC,∴∠DAC=∠C=50°,故答案為50°.【點睛】本題考查了等腰三角形的性質以及平行線性質的應用,注意:兩直線平行,內錯角相等.13、【解析】拋物線的對稱軸為:x=1,∴當x>1時,y隨x的增大而增大.∴若x1>x2>1

時,y1>y2

.故答案為>14、-2【解析】試題分析:根據題意可得2k+3>2,k<2,解得﹣<k<2.因k為整數,所以k=﹣2.考點:一次函數圖象與系數的關系.15、x=-2【解析】方程兩邊同時平方得:,解得:,檢驗:(1)當x=3時,方程左邊=-3,右邊=3,左邊右邊,因此3不是原方程的解;(2)當x=-2時,方程左邊=2,右邊=2,左邊=右邊,因此-2是方程的解.∴原方程的解為:x=-2.故答案為:-2.點睛:(1)根號下含有未知數的方程叫無理方程,解無理方程的基本思想是化“無理方程”為“有理方程”;(2)解無理方程和解分式方程相似,求得未知數的值之后要檢驗,看所得結果是原方程的解還是增根.16、2【解析】

過A作關于直線MN的對稱點A′,連接A′B,由軸對稱的性質可知A′B即為PA+PB的最小值,【詳解】解:連接OB,OA′,AA′,∵AA′關于直線MN對稱,∴∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,過O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,

∴A′B=2A′Q=即PA+PB的最小值.【點睛】本題考查軸對稱求最小值問題及解直角三角形,根據軸對稱的性質準確作圖是本題的解題關鍵.17、1【解析】

連結BD,利用三角形面積公式得到S△ADB=S△ABC=2,則S矩形OBAD=2S△ADB=1,于是可根據反比例函數的比例系數k的幾何意義得到k的值.【詳解】連結BD,如圖,∵DC=2AD,∴S△ADB=S△BDC=S△BAC=×6=2,∵AD⊥y軸于點D,AB⊥x軸,∴四邊形OBAD為矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案為:1.【點睛】本題考查了反比例函數的比例系數k的幾何意義:在反比例函數y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.三、解答題(共7小題,滿分69分)18、(1)150,(2)36°,(3)1.【解析】

(1)根據圖中信息列式計算即可;(2)求得“足球“的人數=150×20%=30人,補全上面的條形統計圖即可;(3)360°×乒乓球”所占的百分比即可得到結論;(4)根據題意計算即可.【詳解】(1)m=21÷14%=150,(2)“足球“的人數=150×20%=30人,補全上面的條形統計圖如圖所示;(3)在圖2中,“乒乓球”所對應扇形的圓心角的度數為360°×=36°;(4)1200×20%=1人,答:估計該校約有1名學生最喜愛足球活動.故答案為150,36°,1.【點睛】本題考查了條形統計圖,觀察條形統計圖、扇形統計圖獲得有效信息是解題關鍵.19、(1)詳見解析;(2)30°.【解析】

(1)根據線段垂直平分線的作法作出AB的垂直平分線即可;(2)連接PA,根據等腰三角形的性質可得,由角平分線的定義可得,根據直角三角形兩銳角互余的性質即可得∠B的度數,可得答案.【詳解】(1)如圖所示:分別以A、B為圓心,大于AB長為半徑畫弧,兩弧相交于點E、F,作直線EF,交BC于點P,∵EF為AB的垂直平分線,∴PA=PB,∴點P即為所求.(2)如圖,連接AP,∵,∴,∵AP是角平分線,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴當時,AP平分.【點睛】本題考查尺規作圖,考查了垂直平分線的性質、直角三角形兩銳角互余的性質及等腰三角形的性質,線段垂直平分線上的點到線段兩端的距離相等;熟練掌握垂直平分線的性質是解題關鍵.20、(1)平均數為320件,中位數是210件,眾數是210件;(2)不合理,定210件【解析】試題分析:(1)根據平均數、中位數和眾數的定義即可求得結果;(2)把月銷售額320件與大部分員工的工資比較即可判斷.(1)平均數件,∵最中間的數據為210,∴這組數據的中位數為210件,∵210是這組數據中出現次數最多的數據,∴眾數為210件;(2)不合理,理由:在15人中有13人銷售額達不到320件,定210件較為合理.考點:本題考查的是平均數、眾數和中位數點評:解答本題的關鍵是熟練掌握找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數;眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個.21、(1)詳見解析;(2)AE=6.1.【解析】

(1)連接OD,利用切線的性質和三角形的內角和證明OD∥EA,即可證得結論;(2)利用相似三角形的判定和性質解答即可.【詳解】(1)連接OD,∵EF是⊙O的切線,∴OD⊥EF,∵OD=OA,∴∠ODA=∠OAD,∵點D是弧BC中點,∴∠EAD=∠OAD,∴∠EAD=∠ODA,∴OD∥EA,∴AE⊥EF;(2)∵AB是直徑,∴∠ADB=90°,∵圓的半徑為5,BD=6∴AB=10,BD=6,在Rt△ADB中,,∵∠EAD=∠DAB,∠AED=∠ADB=90°,∴△AED∽△ADB,∴,即,解得:AE=6.1.【點睛】本題考查了切線的性質,相似三角形的判定和性質,勾股定理的應用以及圓周角定理,關鍵是利用切線的性質和相似三角形判定和性質進行解答.22、(1)100;(2)作圖見解析;(3)1.【解析】試題分析:(1)根據百分比=計算即可;(2)求出“打球”和“其他”的人數,畫出條形圖即可;(3)用樣本估計總體的思想解決問題即可.試題解析:(1)本次抽樣調查中的樣本容量=30÷30%=100,故答案為100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,條形圖如圖所示:(3)估計該校課余興趣愛好為“

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論