



版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋擲一枚質地均勻的硬幣,每次正反面出現的概率相同,連續拋擲5次,至少連續出現3次正面朝上的概率是()A. B. C. D.2.函數的圖象與函數的圖象的交點橫坐標的和為()A. B. C. D.3.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是由一個棱柱挖去一個棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.324.一個組合體的三視圖如圖所示(圖中網格小正方形的邊長為1),則該幾何體的體積是()A. B. C. D.5.存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經過點,則橢圓離心率的取值范圍是()A. B. C. D.6.定義運算,則函數的圖象是().A. B.C. D.7.設集合,,若集合中有且僅有2個元素,則實數的取值范圍為A. B.C. D.8.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內切 B.相交 C.外切 D.相離9.地球上的風能取之不盡,用之不竭.風能是淸潔能源,也是可再生能源.世界各國致力于發展風力發電,近10年來,全球風力發電累計裝機容量連年攀升,中國更是發展迅猛,2014年累計裝機容量就突破了,達到,中國的風力發電技術也日臻成熟,在全球范圍的能源升級換代行動中體現出大國的擔當與決心.以下是近10年全球風力發電累計裝機容量與中國新增裝機容量圖.根據所給信息,正確的統計結論是()A.截止到2015年中國累計裝機容量達到峰值B.10年來全球新增裝機容量連年攀升C.10年來中國新增裝機容量平均超過D.截止到2015年中國累計裝機容量在全球累計裝機容量中占比超過10.集合,則集合的真子集的個數是A.1個 B.3個 C.4個 D.7個11.已知函數(其中為自然對數的底數)有兩個零點,則實數的取值范圍是()A. B.C. D.12.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③二、填空題:本題共4小題,每小題5分,共20分。13.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則14.的二項展開式中,含項的系數為__________.15.某高中共有1800人,其中高一、高二、高三年級的人數依次成等差數列,現用分層抽樣的方法從中抽取60人,那么高二年級被抽取的人數為________.16.若非零向量,滿足,,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)解不等式;(2)若函數最小值為,且,求的最小值.18.(12分)已知點為橢圓上任意一點,直線與圓交于,兩點,點為橢圓的左焦點.(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.19.(12分)2019年春節期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設計了兩種抽獎方案.方案一:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.方案二:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.(1)現有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;(2)若某顧客獲得抽獎機會.①試分別計算他選擇兩種抽獎方案最終獲得返金券的數學期望;②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應選擇哪一種抽獎方案進行促銷活動?20.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點,與平面所成的角的正弦值為,求的長.21.(12分)已知橢圓的左右焦點分別是,點在橢圓上,滿足(1)求橢圓的標準方程;(2)直線過點,且與橢圓只有一個公共點,直線與的傾斜角互補,且與橢圓交于異于點的兩點,與直線交于點(介于兩點之間),是否存在直線,使得直線,,的斜率按某種排序能構成等比數列?若能,求出的方程,若不能,請說理由.22.(10分)設拋物線的焦點為,準線為,為過焦點且垂直于軸的拋物線的弦,已知以為直徑的圓經過點.(1)求的值及該圓的方程;(2)設為上任意一點,過點作的切線,切點為,證明:.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【答案解析】
首先求出樣本空間樣本點為個,再利用分類計數原理求出三個正面向上為連續的3個“1”的樣本點個數,再求出重復數量,可得事件的樣本點數,根據古典概型的概率計算公式即可求解.【題目詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復,重復數量為,事件的樣本點數為:個.故不同的樣本點數為8個,.故選:A【答案點睛】本題考查了分類計數原理與分步計數原理,古典概型的概率計算公式,屬于基礎題2.B【答案解析】
根據兩個函數相等,求出所有交點的橫坐標,然后求和即可.【題目詳解】令,有,所以或.又,所以或或或,所以函數的圖象與函數的圖象交點的橫坐標的和,故選B.【答案點睛】本題主要考查三角函數的圖象及給值求角,側重考查數學建模和數學運算的核心素養.3.B【答案解析】
由三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,利用體積公式,即可求解。【題目詳解】由題意,幾何體的三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,所以幾何體的體積為,故選B。【答案點睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據三視圖的規則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數量關系,利用相應公式求解。4.C【答案解析】
根據組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個三棱柱,從而解得幾何體的體積.【題目詳解】由幾何體的三視圖可得,幾何體的結構是在一個底面半徑為1的圓、高為2的圓柱中挖去一個底面腰長為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【答案點睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關鍵是要能由三視圖還原出組合幾何體,然后根據幾何體的結構求出其體積.5.D【答案解析】
根據題意利用垂直直線斜率間的關系建立不等式再求解即可.【題目詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【答案點睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎題.6.A【答案解析】
由已知新運算的意義就是取得中的最小值,因此函數,只有選項中的圖象符合要求,故選A.7.B【答案解析】
由題意知且,結合數軸即可求得的取值范圍.【題目詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【答案點睛】本題主要考查了集合的關系及運算,以及借助數軸解決有關問題,其中確定中的元素是解題的關鍵,屬于基礎題.8.B【答案解析】化簡圓M:x2+(y-a)2=a又N(1,1),r9.D【答案解析】
先列表分析近10年全球風力發電新增裝機容量,再結合數據研究單調性、平均值以及占比,即可作出選擇.【題目詳解】年份2009201020112012201320142015201620172018累計裝機容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機容量39.140.645.135.851.863.854.953.551.4中國累計裝機裝機容量逐年遞增,A錯誤;全球新增裝機容量在2015年之后呈現下降趨勢,B錯誤;經計算,10年來中國新增裝機容量平均每年為,選項C錯誤;截止到2015年中國累計裝機容量,全球累計裝機容量,占比為,選項D正確.故選:D【答案點睛】本題考查條形圖,考查基本分析求解能力,屬基礎題.10.B【答案解析】
由題意,結合集合,求得集合,得到集合中元素的個數,即可求解,得到答案.【題目詳解】由題意,集合,則,所以集合的真子集的個數為個,故選B.【答案點睛】本題主要考查了集合的運算和集合中真子集的個數個數的求解,其中作出集合的運算,得到集合,再由真子集個數的公式作出計算是解答的關鍵,著重考查了推理與運算能力.11.B【答案解析】
求出導函數,確定函數的單調性,確定函數的最值,根據零點存在定理可確定參數范圍.【題目詳解】,當時,,單調遞增,當時,,單調遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數有兩個零點,則,∴.故選:B.【答案點睛】本題考查函數的零點,考查用導數研究函數的最值,根據零點存在定理確定參數范圍.12.C【答案解析】
根據直線與平面,平面與平面的位置關系進行判斷即可.【題目詳解】根據面面平行的性質以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質可得,④正確;故選:C【答案點睛】本題主要考查了判斷直線與平面,平面與平面的位置關系,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.3【答案解析】
先根據約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【題目詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫出可行域如圖所示.目標函數z=2x-y,即平移直線y=2x-z,截距最大時即為所求.2y+1=0x-y-1=0點A(12,z在點A處有最小值:z=2×1故答案為:32【答案點睛】本題主要考查線性規劃的基本應用,利用數形結合,結合目標函數的幾何意義是解決此類問題的基本方法.14.【答案解析】
寫出二項展開式的通項,然后取的指數為求得的值,則項的系數可求得.【題目詳解】,由,可得.含項的系數為.故答案為:【答案點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.15.【答案解析】
由三個年級人數成等差數列和總人數可求得高二年級共有人,根據抽樣比可求得結果.【題目詳解】設高一、高二、高三人數分別為,則且,解得:,用分層抽樣的方法抽取人,那么高二年級被抽取的人數為人.故答案為:.【答案點睛】本題考查分層抽樣問題的求解,涉及到等差數列的相關知識,屬于基礎題.16.1【答案解析】
根據向量的模長公式以及數量積公式,得出,解方程即可得出答案.【題目詳解】,即解得或(舍)故答案為:【答案點睛】本題主要考查了向量的數量積公式以及模長公式的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【答案解析】
(1)利用零點分段法,求得不等式的解集.(2)先求得,即,再根據“的代換”的方法,結合基本不等式,求得的最小值.【題目詳解】(1)當時,,即,無解;當時,,即,得;當時,,即,得.故所求不等式的解集為.(2)因為,所以,則,.當且僅當即時取等號.故的最小值為.【答案點睛】本小題主要考查零點分段法解絕對值不等式,考查利用基本不等式求最值,考查化歸與轉化的數學思想方法,屬于中檔題.18.(1)證明見解析;(2)是,理由見解析.【答案解析】
(1)根據判別式即可證明.(2)根據向量的數量積和韋達定理即可證明,需要分類討論,【題目詳解】解:(1)當時直線方程為或,直線與橢圓相切.當時,由得,由題知,,即,所以.故直線與橢圓相切.(2)設,,當時,,,,所以,即.當時,由得,則,,.因為.所以,即.故為定值.【答案點睛】本題考查橢圓的簡單性質,考查向量的運算,注意直線方程和橢圓方程聯立,運用韋達定理,考查化簡整理的運算能力,屬于中檔題.19.(1)(2)①②第一種抽獎方案.【答案解析】
(1)方案一中每一次摸到紅球的概率為,每名顧客有放回的抽3次獲180元返金劵的概率為,根據相互獨立事件的概率可知兩顧客都獲得180元返金劵的概率(2)①分別計算方案一,方案二顧客獲返金卷的期望,方案一列出分布列計算即可,方案二根據二項分布計算期望即可②根據①得出結論.【題目詳解】(1)選擇方案一,則每一次摸到紅球的概率為設“每位顧客獲得180元返金劵”為事件A,則所以兩位顧客均獲得180元返金劵的概率(2)①若選擇抽獎方案一,則每一次摸到紅球的概率為,每一次摸到白球的概率為.設獲得返金劵金額為元,則可能的取值為60,100,140,180.則;;;.所以選擇抽獎方案一,該顧客獲得返金劵金額的數學期望為(元)若選擇抽獎方案二,設三次摸球的過程中,摸到紅球的次數為,最終獲得返金劵的金額為元,則,故所以選擇抽獎方案二,該顧客獲得返金劵金額的數學期望為(元).②即,所以該超市應選擇第一種抽獎方案【答案點睛】本題主要考查了古典概型,相互獨立事件的概率,二項分布,期望,及概率知識在實際問題中的應用,屬于中檔題.20.(Ⅰ)見解析;(Ⅱ)【答案解析】
(Ⅰ)取的中點,連接,由,,得三點共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設,則,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加求得,再過作,則平面,即點到平面的距離,由是中點,得到到平面的距離,然后根據與平面所成的角的正弦值為求解.【題目詳解】(Ⅰ)取的中點,連接,由,,得三點共線,且,又,,所以平面,所以.(Ⅱ)設,,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以,,過作,則平面,即點到平面的距離,因為是中點,所以為到平面的距離,因為與平面所成的角的正弦值為,即,解得.【答案點睛】本題主要考查線面垂直的判定定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程制圖基礎 05第三章學習資料
- 江蘇省常州市新北區重點名校2025屆初三中考模擬沖刺卷(提優卷)(一)生物試題含解析
- 山東經貿職業學院《管理學經典閱讀》2023-2024學年第二學期期末試卷
- 唐山師范學院《工程估價與實務》2023-2024學年第二學期期末試卷
- 卓越學術之路
- 二零二五版車輛質押借款合同書范例
- 天津家庭裝修合同書
- 轉診合作協議書模板
- 私人借款延期補充協議書
- 引領家居設計創新
- (完整版)供應商審核表
- 說專業(市場營銷專業)課件
- 火電廠工藝流程圖
- 以“政府績效與公眾信任”為主題撰寫一篇小論文6篇
- 員工獎懲簽認單
- 水腫病患者的護理查房ppt
- 第18章生殖毒性研究
- CSD恒速傳動裝置
- 美的空調制造工藝手冊(共220頁)
- 天醫門符法修煉與祝由移病法
- 皮膚營養美容
評論
0/150
提交評論