




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
/
ChapterEighteenTechnology1WhereAreWeintheCourse?Wehavestudiedconsumerbehavior;Wenowstudyproducerbehavior;Wewillthencombinethesetwotostudymarketequilibrium.WhereAreWeintheCourse?We2ThreeStepstoStudyofProducerBehavior1st:Weworkonproducer’s“budgetset”,whichisthetechnologyset;2nd:Westudyproducer’s“utilityfunction”,whichishisprofitfunction;3rd:Weexamineproducer’schoice,whichishisoptimalproductionplan.ThreeStepstoStudyofProduc3TechnologiesAtechnologyisaprocessbywhichinputsareconvertedtoanoutput.Usuallyseveraltechnologieswillproducethesameproduct.Howdowecomparetechnologies?TechnologiesAtechnologyisa4ProductionFunctions
Letydenotetheoutputlevel.Aninputbundleisavectoroftheinputlevels;(x1,x2,…,xn).Thetechnology’sproductionfunctionstatesthemaximumamountofoutputpossiblefromaninputbundle.ProductionFunctionsLetyden5ProductionFunctionsy=f(x)istheproductionfunction.x’xInputLevelOutputLevely’y’=f(x’)isthemaximaloutputlevelobtainablefromx’inputunits.Oneinput,oneoutputProductionFunctionsy=f(x)i6TechnologySetsAproductionplanisaninputbundleandanoutputlevel;(x1,…,xn,y).Aproductionplanisfeasibleif
Thecollectionofallfeasibleproductionplansisthetechnologyset.TechnologySetsAproductionpl7TechnologySetsy=f(x)istheproductionfunction.x’xInputLevelOutputLevely’y”y’=f(x’)isthemaximaloutputlevelobtainablefromx’inputunits.Oneinput,oneoutputy”=f(x’)isanoutputlevelthatisfeasiblefromx’inputunits.TechnologySetsy=f(x)isthe8TechnologySetsThetechnologysetisTechnologySetsThetechnology9TechnologySetsx’xInputLevelOutputLevely’Oneinput,oneoutputy”Thetechnology
setTechnically
inefficient
plansTechnically
efficientplansTechnologySetsx’xInputLevelO10TechnologieswithMultipleInputsWhatdoesatechnologylooklikewhenthereismorethanoneinput?Thetwoinputcase:Inputlevelsarex1andx2.Outputlevelisy.SupposetheproductionfunctionisTechnologieswithMultipleInp11TechnologieswithMultipleInputsTheyoutputunitisoquantisthesetofallinputbundlesthatyieldatmostthesameoutputlevely.Thecompletecollectionofisoquantsistheisoquantmap.TechnologieswithMultipleInp12IsoquantswithTwoVariableInputsyo8yo4x1x2yo6yo2IsoquantswithTwoVariableIn13Cobb-DouglasTechnologiesACobb-Douglasproductionfunctionisoftheform
E.g.
Cobb-DouglasTechnologiesACob14x2x1Allisoquantsarehyperbolic,
asymptotingto,butnever
touchinganyaxis.Cobb-DouglasTechnologiesx2x1Allisoquantsarehyperbol15Fixed-ProportionsTechnologiesAfixed-proportionsproductionfunctionisoftheform
E.g.
withFixed-ProportionsTechnologies16Fixed-ProportionsTechnologiesx2x1min{x1,2x2}=144814247min{x1,2x2}=8min{x1,2x2}=4x1=2x2Fixed-ProportionsTechnologies17Perfect-SubstitutesTechnologiesAperfect-substitutesproductionfunctionisoftheform
E.g.
Perfect-SubstitutesTechnologi18Perfect-SubstitutionTechnologies93186248x1x2x1+3x2=18x1+3x2=36x1+3x2=48AllarelinearandparallelPerfect-SubstitutionTechnolog19Marginal(Physical)ProductsThemarginalproductofinputiistherate-of-changeoftheoutputlevelasthelevelofinputichanges,holdingallotherinputlevelsfixed.Thatis,Marginal(Physical)ProductsTh20Marginal(Physical)ProductsE.g.ifthenthemarginalproductofinput1isMarginal(Physical)ProductsE.21Marginal(Physical)ProductsThemarginalproductofinputiisdiminishingifitbecomessmallerasthelevelofinputiincreases.Thatis,ifMarginal(Physical)ProductsTh22Marginal(Physical)ProductsandsoandBothmarginalproductsarediminishing.E.g.ifthenMarginal(Physical)Productsan23Returns-to-ScaleMarginalproductsdescribethechangeinoutputlevelasasingleinputlevelchanges.Returns-to-scaledescribeshowtheoutputlevelchangesasallinputlevelschangeindirectproportion(e.g.allinputlevelsdoubled,orhalved).Returns-to-ScaleMarginalprodu24Returns-to-ScaleIf,foranyinputbundle(x1,…,xn)andanyk,thenthetechnologydescribedbythe
productionfunctionfexhibitsconstant
returns-to-scale.
Returns-to-ScaleIf,foranyin25Returns-to-Scaley=f(x)x’xInputLevelOutputLevely’Oneinput,oneoutput2x’2y’Constant
returns-to-scaleReturns-to-Scaley=f(x)x’xInp26Returns-to-ScaleIf,foranyinputbundle(x1,…,xn)andanyk>1,thenthetechnologyexhibitsdiminishing
returns-to-scale.
Returns-to-ScaleIf,foranyin27Returns-to-Scaley=f(x)x’xInputLevelOutputLevelf(x’)Oneinput,oneoutput2x’f(2x’)2f(x’)Decreasing
returns-to-scaleReturns-to-Scaley=f(x)x’xInp28Returns-to-ScaleIf,foranyinputbundle(x1,…,xn)andanyk>1,thenthetechnologyexhibitsincreasing
returns-to-scale.Returns-to-ScaleIf,foranyin29Returns-to-Scaley=f(x)x’xInputLevelOutputLevelf(x’)Oneinput,oneoutput2x’f(2x’)2f(x’)Increasing
returns-to-scaleReturns-to-Scaley=f(x)x’xInp30LocalScaleofReturns-to-ScaleWecanmodifyourdefinitionabovetodescribesituationsof‘local’returns-to-scale.LocalScaleofReturns-to-Scal31Returns-to-Scaley=f(x)xInputLevelOutputLevelOneinput,oneoutputDecreasing
returns-to-scaleIncreasing
returns-to-scaleReturns-to-Scaley=f(x)xInput32ExamplesofReturns-to-ScaleTheperfect-substitutesproduction
functionisWehave:Theperfect-substitutesproduction
functionexhibitsconstantreturns-to-scale.ExamplesofReturns-to-ScaleTh33ExamplesofReturns-to-ScaleTheperfect-complementsproduction
functionisWehave:Theperfect-complementsproduction
functionexhibitsconstantreturns-to-scale.ExamplesofReturns-to-ScaleTh34ExamplesofReturns-to-ScaleTheCobb-DouglasproductionfunctionisWehaveExamplesofReturns-to-ScaleTh35ExamplesofReturns-to-ScaleTheCobb-DouglasproductionfunctionisTheCobb-Douglastechnology’sreturns-
to-scaleis
constantifa1+…+an=1
increasingifa1+…+an>1
decreasingifa1+…+an<1.ExamplesofReturns-to-ScaleTh36ComparingReturns-to-ScalewithMarginalProductQ:Canatechnologyexhibitincreasingreturns-to-scaleevenifallofitsmarginalproductsarediminishing?A:Yes.E.g.
ComparingReturns-to-Scalewit37ComparingReturns-to-ScalewithMarginalProduct(Cont.)sothistechnologyexhibits
increasingreturns-to-scale.Butdiminishesasx1increasesanddiminishesasx1increases.ComparingReturns-to-Scalewit38Returns-to-ScaleAmarginalproductistherate-of-changeofoutputasoneinputlevelincreases,holdingallotherinputlevelsfixed.Marginalproductdiminishesbecausetheotherinputlevelsarefixed,sotheincreasinginput’sunitshaveeachlessandlessofotherinputswithwhichtowork.Returns-to-ScaleAmarginalpro39TechnicalRate-of-SubstitutionAtwhatratecanafirmsubstituteoneinputforanotherwithoutchangingitsoutputlevel?TechnicalRate-of-Substitution40TechnicalRate-of-Substitutionx2x1yo100Theslopeistherateatwhichinput2mustbegivenupasinput1’slevelisincreasedsoasnottochangetheoutputlevel.Theslopeofanisoquantisitstechnicalrate-of-substitution.TechnicalRate-of-Substitution41TechnicalRate-of-SubstitutionHowisatechnicalrate-of-substitutioncomputed?TheproductionfunctionisAsmallchange(dx1,dx2)intheinputbundlecausesachangetotheoutputlevelofTechnicalRate-of-Substitution42TechnicalRate-of-SubstitutionButdy=0sincethereistobenochange
totheoutputlevel,sothechangesdx1
anddx2totheinputlevelsmustsatisfyTechnicalRate-of-Substitution43TechnicalRate-of-Substitutionistherateatwhichinput2mustbegiven
upasinput1increasessoastokeep
theoutputlevelconstant.Itistheslope
oftheisoquant.TechnicalRate-of-Substitution44Well-BehavedTechnologiesAwell-behavedtechnologyismonotonic,andconvex.Well-BehavedTechnologiesAwel45Well-BehavedTechnologies-MonotonicityMonotonicity:Moreofanyinputgeneratesmoreoutput.yxyxmonotonic
not
monotonicWell-BehavedTechnologies-Mo46Well-BehavedTechnologies-ConvexityConvexity:Iftheinputbundlesx’andx”bothprovideatleastyunitsofoutputthenthemixturetx’+(1-t)x”providesatleastyunitsofoutput,forany0<t<1.Well-BehavedTechnologies-Co47Well-BehavedTechnologies-Convexityx2x1yo100yo120Well-BehavedTechnologies-Co48Well-BehavedTechnologies-Convexityx2x1ConvexityimpliesthattheTRS
increases(becomesless
negative)asx1increases.Well-BehavedTechnologies-Co49Well-BehavedTechnologiesx2x1yo100yo50yo200higheroutputWell-BehavedTechnologiesx2x1y50TheLong-RunandtheShort-RunsThelong-runisthecircumstanceinwhichafirmisunrestrictedinitschoiceofallinputlevels.Therearemanypossibleshort-runs.Ashort-runisacircumstanceinwhichafirmisrestrictedinsomewayinitschoiceofatleastoneinputlevel.TheLong-RunandtheShort-Run51TheLong-RunandtheShort-RunsAusefulwaytothinkofthelong-runisthatthefirmcanchooseasitpleasesinwhichshort-runcircumstancetobe.TheLong-RunandtheShort-Run52TheLong-RunandtheShort-RunsWhatdoshort-runrestrictionsimplyforafirm’stechnology?Supposetheshort-runrestrictionisfixingthelevelofinput2.Input2isthusafixedinputintheshort-run.Input1remainsvariable.TheLong-RunandtheShort-Run53TheLong-RunandtheShort-Runs
isthelong-runproduction
function(bothx1andx2arevariable).Theshort-runproductionfunctionwhen
x2
o1is
Theshort-runproductionfunctionwhen
x2
o10is
TheLong-RunandtheShort-Run54TheLong-RunandtheShort-Runsx1yFourshort-runproductionfunctions.TheLong-RunandtheShort-Run55Summary:KeyConceptsProductionfunctionandisoquantsMarginalproductandreturns-to-scaleTechnicalrateofsubstitutionLong-runandshort-runproductionfunctionsSummary:KeyConceptsProductio56/
ChapterEighteenTechnology57WhereAreWeintheCourse?Wehavestudiedconsumerbehavior;Wenowstudyproducerbehavior;Wewillthencombinethesetwotostudymarketequilibrium.WhereAreWeintheCourse?We58ThreeStepstoStudyofProducerBehavior1st:Weworkonproducer’s“budgetset”,whichisthetechnologyset;2nd:Westudyproducer’s“utilityfunction”,whichishisprofitfunction;3rd:Weexamineproducer’schoice,whichishisoptimalproductionplan.ThreeStepstoStudyofProduc59TechnologiesAtechnologyisaprocessbywhichinputsareconvertedtoanoutput.Usuallyseveraltechnologieswillproducethesameproduct.Howdowecomparetechnologies?TechnologiesAtechnologyisa60ProductionFunctions
Letydenotetheoutputlevel.Aninputbundleisavectoroftheinputlevels;(x1,x2,…,xn).Thetechnology’sproductionfunctionstatesthemaximumamountofoutputpossiblefromaninputbundle.ProductionFunctionsLetyden61ProductionFunctionsy=f(x)istheproductionfunction.x’xInputLevelOutputLevely’y’=f(x’)isthemaximaloutputlevelobtainablefromx’inputunits.Oneinput,oneoutputProductionFunctionsy=f(x)i62TechnologySetsAproductionplanisaninputbundleandanoutputlevel;(x1,…,xn,y).Aproductionplanisfeasibleif
Thecollectionofallfeasibleproductionplansisthetechnologyset.TechnologySetsAproductionpl63TechnologySetsy=f(x)istheproductionfunction.x’xInputLevelOutputLevely’y”y’=f(x’)isthemaximaloutputlevelobtainablefromx’inputunits.Oneinput,oneoutputy”=f(x’)isanoutputlevelthatisfeasiblefromx’inputunits.TechnologySetsy=f(x)isthe64TechnologySetsThetechnologysetisTechnologySetsThetechnology65TechnologySetsx’xInputLevelOutputLevely’Oneinput,oneoutputy”Thetechnology
setTechnically
inefficient
plansTechnically
efficientplansTechnologySetsx’xInputLevelO66TechnologieswithMultipleInputsWhatdoesatechnologylooklikewhenthereismorethanoneinput?Thetwoinputcase:Inputlevelsarex1andx2.Outputlevelisy.SupposetheproductionfunctionisTechnologieswithMultipleInp67TechnologieswithMultipleInputsTheyoutputunitisoquantisthesetofallinputbundlesthatyieldatmostthesameoutputlevely.Thecompletecollectionofisoquantsistheisoquantmap.TechnologieswithMultipleInp68IsoquantswithTwoVariableInputsyo8yo4x1x2yo6yo2IsoquantswithTwoVariableIn69Cobb-DouglasTechnologiesACobb-Douglasproductionfunctionisoftheform
E.g.
Cobb-DouglasTechnologiesACob70x2x1Allisoquantsarehyperbolic,
asymptotingto,butnever
touchinganyaxis.Cobb-DouglasTechnologiesx2x1Allisoquantsarehyperbol71Fixed-ProportionsTechnologiesAfixed-proportionsproductionfunctionisoftheform
E.g.
withFixed-ProportionsTechnologies72Fixed-ProportionsTechnologiesx2x1min{x1,2x2}=144814247min{x1,2x2}=8min{x1,2x2}=4x1=2x2Fixed-ProportionsTechnologies73Perfect-SubstitutesTechnologiesAperfect-substitutesproductionfunctionisoftheform
E.g.
Perfect-SubstitutesTechnologi74Perfect-SubstitutionTechnologies93186248x1x2x1+3x2=18x1+3x2=36x1+3x2=48AllarelinearandparallelPerfect-SubstitutionTechnolog75Marginal(Physical)ProductsThemarginalproductofinputiistherate-of-changeoftheoutputlevelasthelevelofinputichanges,holdingallotherinputlevelsfixed.Thatis,Marginal(Physical)ProductsTh76Marginal(Physical)ProductsE.g.ifthenthemarginalproductofinput1isMarginal(Physical)ProductsE.77Marginal(Physical)ProductsThemarginalproductofinputiisdiminishingifitbecomessmallerasthelevelofinputiincreases.Thatis,ifMarginal(Physical)ProductsTh78Marginal(Physical)ProductsandsoandBothmarginalproductsarediminishing.E.g.ifthenMarginal(Physical)Productsan79Returns-to-ScaleMarginalproductsdescribethechangeinoutputlevelasasingleinputlevelchanges.Returns-to-scaledescribeshowtheoutputlevelchangesasallinputlevelschangeindirectproportion(e.g.allinputlevelsdoubled,orhalved).Returns-to-ScaleMarginalprodu80Returns-to-ScaleIf,foranyinputbundle(x1,…,xn)andanyk,thenthetechnologydescribedbythe
productionfunctionfexhibitsconstant
returns-to-scale.
Returns-to-ScaleIf,foranyin81Returns-to-Scaley=f(x)x’xInputLevelOutputLevely’Oneinput,oneoutput2x’2y’Constant
returns-to-scaleReturns-to-Scaley=f(x)x’xInp82Returns-to-ScaleIf,foranyinputbundle(x1,…,xn)andanyk>1,thenthetechnologyexhibitsdiminishing
returns-to-scale.
Returns-to-ScaleIf,foranyin83Returns-to-Scaley=f(x)x’xInputLevelOutputLevelf(x’)Oneinput,oneoutput2x’f(2x’)2f(x’)Decreasing
returns-to-scaleReturns-to-Scaley=f(x)x’xInp84Returns-to-ScaleIf,foranyinputbundle(x1,…,xn)andanyk>1,thenthetechnologyexhibitsincreasing
returns-to-scale.Returns-to-ScaleIf,foranyin85Returns-to-Scaley=f(x)x’xInputLevelOutputLevelf(x’)Oneinput,oneoutput2x’f(2x’)2f(x’)Increasing
returns-to-scaleReturns-to-Scaley=f(x)x’xInp86LocalScaleofReturns-to-ScaleWecanmodifyourdefinitionabovetodescribesituationsof‘local’returns-to-scale.LocalScaleofReturns-to-Scal87Returns-to-Scaley=f(x)xInputLevelOutputLevelOneinput,oneoutputDecreasing
returns-to-scaleIncreasing
returns-to-scaleReturns-to-Scaley=f(x)xInput88ExamplesofReturns-to-ScaleTheperfect-substitutesproduction
functionisWehave:Theperfect-substitutesproduction
functionexhibitsconstantreturns-to-scale.ExamplesofReturns-to-ScaleTh89ExamplesofReturns-to-ScaleTheperfect-complementsproduction
functionisWehave:Theperfect-complementsproduction
functionexhibitsconstantreturns-to-scale.ExamplesofReturns-to-ScaleTh90ExamplesofReturns-to-ScaleTheCobb-DouglasproductionfunctionisWehaveExamplesofReturns-to-ScaleTh91ExamplesofReturns-to-ScaleTheCobb-DouglasproductionfunctionisTheCobb-Douglastechnology’sreturns-
to-scaleis
constantifa1+…+an=1
increasingifa1+…+an>1
decreasingifa1+…+an<1.ExamplesofReturns-to-ScaleTh92ComparingReturns-to-ScalewithMarginalProductQ:Canatechnologyexhibitincreasingreturns-to-scaleevenifallofitsmarginalproductsarediminishing?A:Yes.E.g.
ComparingReturns-to-Scalewit93ComparingReturns-to-ScalewithMarginalProduct(Cont.)sothistechnologyexhibits
increasingreturns-to-scale.Butdiminishesasx1increasesanddiminishesasx1increases.ComparingReturns-to-Scalewit94Returns-to-ScaleAmarginalproductistherate-of-changeofoutputasoneinputlevelincreases,holdingallotherinputlevelsfixed.Marginalproductdiminishesbecausetheotherinputlevelsarefixed,sotheincreasinginput’sunitshaveeachlessandlessofotherinputswithwhichtowork.Returns-to-ScaleAmarginalpro95TechnicalRate-of-SubstitutionAtwhatratecanafirmsubstituteoneinputforanotherwithoutchangingitsoutputlevel?TechnicalRate-of-Substitution96TechnicalRate-of-Substitutionx2x1yo100Theslopeistherateatwhichinput2mustbegivenupasinput1’slevelisincreasedsoasnottochangetheoutputlevel.Theslopeofanisoquantisitstechnicalrate-of-substitution.TechnicalRate-of-Substitution97TechnicalRate-of-SubstitutionHowisatechnicalrate-of-substitutioncomputed?TheproductionfunctionisAsmallchange(dx1,dx2)intheinputbundlecausesachangetotheoutputlevelofTechnicalRate-of-Substitution98TechnicalRate-of-SubstitutionButdy=0sincethereistobenochange
totheoutputlevel,sothechangesdx1
anddx2totheinputlevelsmustsatisfyTechnicalRate-of-Substitution99TechnicalRate-of-Substitutionistherateatwhichinput2mustbegiven
upasinput1increasessoastokeep
theoutputlevelconstant.Itistheslope
oftheisoquant.TechnicalRate-of-Substitution100Well-BehavedTechnologiesAwell-behavedtechnologyismonotonic,andconvex.Well-BehavedTechnologiesAwel101Well-BehavedTechnologies-Monotonicity
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 溫州理工學院《音樂》2023-2024學年第一學期期末試卷
- 山東中醫藥高等專科學校《比較憲法》2023-2024學年第二學期期末試卷
- 上海體育大學《流體機械CAD》2023-2024學年第二學期期末試卷
- 武漢電力職業技術學院《食用菌栽培與加工技術》2023-2024學年第二學期期末試卷
- 商場鋪位租賃合同書二零二五年
- 荒山荒地承包合同書范例
- 二零二五離婚撫養費給付標準
- 質押借款合同模板二零二五年
- 二零二五社保補償金協議
- 私人房屋裝修安全協議書
- 醫院藥品信息管理系統(DOC)
- isa-381g站用變接地保護測控裝置技術使用說明書南網版v3
- 計算機應用基礎(中等職業學校校本教材)
- 完整版健康管理師
- 沈陽終止解除勞動合同范文證明書(三聯)
- 廣東省中型灌區續建配套與節水改造工程初步設計報告編制指南17
- 哲學專業英語詞匯
- 2022年教師資格《初中道德與法治學科知識與教學能力》真題卷
- SOP標準作業指導書1
- 基于內模控制的模糊PID參數的整定外文文獻翻譯完稿
- 最全可自由編輯的中國各省市地圖
評論
0/150
提交評論