




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
多邊形的認識第3課時 三角形的內角和冀教版
數學
四年級
下冊1、清楚探索三角形內角和的過程,三角形的內角和是180°,能解決和三角形內角和有關的簡單問題。2、用三角形內角和是180°
解釋為什么三角形中至少有兩個銳角。觀察下面兩個特殊的三角形,猜測一下:它們的角有什么特點?我看等腰三角形的兩個底角相等。我看等邊三角形的三個角都相等。用量角器分別測量等腰三角形和等邊三角形的三個角,看一看你的猜測是否正確。30°30°120°等腰三角形的兩個底角都是30°,三個角的和是180°。用量角器分別測量等腰三角形和等邊三角形的三個角,看一看你的猜測是否正確。60°60°60°等邊三角形每個角都是60°,三個角的和是180°。任意畫一個三角形,測量三個內角的度數并求和。231∠1、∠2、∠3都叫做三角形的內角。把小組內幾個同學測量和計算的結果填在下表中。從大家測量和計算的結果中,你發現了什么?分小組討論,請代表回答。姓名∠1∠2∠3三個內角的和任意三角形的內角和都是180°。把附頁中的三角形剪下來,用其他方法驗證三角形的內角和是180°。3把附頁中的三角形剪下來,用其他方法驗證三角形的內角和是180°我把其中的兩個角撕下來。三個角拼在一起組成一個平角:180°。321議一議:(1)直角三角形中兩個銳角的和是多少度?直角三角形三個內角度數的和是180°。直角三角形中一個直角是90°。另外兩個銳角度數的和是180°-90°=90°。90°議一議:(2)一個三角形至少有幾個銳角?為什么?假設沒有銳角,那就會有直角或者鈍角。如果是兩個直角一個鈍角,兩個直角的和已經是180°,不能再加第三個角,沒法組成三角形。如果是兩個鈍角一個直角,顯然兩角和大于180°,不能再加第三個角,沒法組成三角形。假設只有1個銳角,那就會有2個直角或鈍角,這時三角形的內角和會大于等于180°。議一議:(2)一個三角形至少有幾個銳角?為什么?假設有2個銳角,那要保證內角和是180°,第三個角可以是銳角、鈍角、直角的任何一種。所以一個三角形至少有2個銳角。1.算一算,填一填。∠1、∠2、∠3是三角形的三個內角。(1)
∠1=50°,∠2=35°,∠3=(這是一個( )角三角形。(2)
∠1=42°,∠2=48°,∠3=(這是一個( )角三角形。(3)
∠1=70°,∠2=55°,∠3=(95°)。鈍90°)。直55°)。銳這是一個( )角三角形,也是一個(等腰
)三角形。2.求下列三角形中未知角的度數。(1)180°-50°-48°=82°(2)180°-90°-40°=50°(3)180°-110°-42°=28°3.已知等腰三角形的一個底角是65°。它的頂角是多少度?等腰三角形兩個底角的度數相等,并且三角形三個內角度數的和是180°。180°?65°×
?=180°?
130°= 50
°答:它的頂角是50°。1、任意三角形的內角和都是180°。2、直角三角形中兩個銳角的和是90°。3、一個三角形至少有2個銳角。4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 邯鄲區域龍山電廠設備采購合同成功簽訂
- 焦作市達標名校2025屆初三中考適應性考試(零診)生物試題含解析
- 不亂吃東西安全教案課件
- 江蘇警官學院《控制與決策會計》2023-2024學年第二學期期末試卷
- 遼寧省朝陽市建平縣重點中學2025屆初三下學期高中畢業班3月質檢英語試題試卷含答案
- 山西旅游職業學院《幼兒語言教育與活動指導》2023-2024學年第二學期期末試卷
- 山西經貿職業學院《應用泛函分析》2023-2024學年第二學期期末試卷
- 三方工業租賃協議合同范本
- 江西泰豪動漫職業學院《書法文化與教學》2023-2024學年第二學期期末試卷
- 吉林省通榆縣一中2025屆高三月考試題含解析
- 防化的相關知識
- 青少年科技創新知識講座
- 中國糖尿病防治指南(2024版)解讀
- 時區與區時課件
- 許慎《說文解字》(全文)
- DB34∕T 1948-2013 建設工程造價咨詢檔案立卷標準
- 通用門座機安裝工藝2
- 企業集團財務管理綜合練習計算
- 養老機構服務高質量115項明細
- 船舶首制船設計任務書doc
- 電氣專業迎峰度夏措施及預案
評論
0/150
提交評論