安徽滁州市來安縣水口中學2023學年高考適應性考試數學試卷(含解析)_第1頁
安徽滁州市來安縣水口中學2023學年高考適應性考試數學試卷(含解析)_第2頁
安徽滁州市來安縣水口中學2023學年高考適應性考試數學試卷(含解析)_第3頁
安徽滁州市來安縣水口中學2023學年高考適應性考試數學試卷(含解析)_第4頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023學年高考數學模擬測試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設全集,集合,則=()A. B. C. D.2.已知六棱錐各頂點都在同一個球(記為球)的球面上,且底面為正六邊形,頂點在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.3.是平面上的一定點,是平面上不共線的三點,動點滿足,,則動點的軌跡一定經過的()A.重心 B.垂心 C.外心 D.內心4.設,分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.5.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③6.已知等差數列{an},則“a2>a1”是“數列{an}為單調遞增數列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件7.在棱長均相等的正三棱柱中,為的中點,在上,且,則下述結論:①;②;③平面平面:④異面直線與所成角為其中正確命題的個數為()A.1 B.2 C.3 D.48.函數y=sin2x的圖象可能是A. B.C. D.9.《九章算術》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦的植物,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.10.2020年是脫貧攻堅決戰決勝之年,某市為早日實現目標,現將甲、乙、丙、丁4名干部派遺到、、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種11.《九章算術》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側棱垂直于底面的四棱錐.如圖,在塹堵中,,,當陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.12.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-3二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,若恒成立,則實數的取值范圍是____.14.已知多項式的各項系數之和為32,則展開式中含項的系數為______.15.已知為矩形的對角線的交點,現從這5個點中任選3個點,則這3個點不共線的概率為________.16.已知函數為奇函數,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若不等式在時恒成立,則的取值范圍是__________.18.(12分)已知函數.(1)當時,解關于x的不等式;(2)當時,若對任意實數,都成立,求實數的取值范圍.19.(12分)如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,且過點.為橢圓的右焦點,為橢圓上關于原點對稱的兩點,連接分別交橢圓于兩點.⑴求橢圓的標準方程;⑵若,求的值;⑶設直線,的斜率分別為,,是否存在實數,使得,若存在,求出的值;若不存在,請說明理由.20.(12分)的內角A,B,C的對邊分別為a,b,c,已知,.求C;若,求,的面積21.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.22.(10分)已知各項均為正數的數列的前項和為,且,(,且)(1)求數列的通項公式;(2)證明:當時,

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【答案解析】

先求得全集包含的元素,由此求得集合的補集.【題目詳解】由解得,故,所以,故選A.【答案點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎題.2、D【答案解析】

由題意,得出六棱錐為正六棱錐,求得,再結合球的性質,求得球的半徑,利用表面積公式,即可求解.【題目詳解】由題意,六棱錐底面為正六邊形,頂點在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因為,所以,設外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【答案點睛】本題主要考查了正棱錐的幾何結構特征,以及外接球的表面積的計算,其中解答中熟記幾何體的結構特征,熟練應用球的性質求得球的半徑是解答的關鍵,著重考查了空間想象能力,以及推理與計算能力,屬于中檔試題.3、B【答案解析】

解出,計算并化簡可得出結論.【題目詳解】λ(),∴,∴,即點P在BC邊的高上,即點P的軌跡經過△ABC的垂心.故選B.【答案點睛】本題考查了平面向量的數量積運算在幾何中的應用,根據條件中的角計算是關鍵.4、C【答案解析】

設過點作圓的切線的切點為,根據切線的性質可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【題目詳解】設過點作圓的切線的切點為,,所以是中點,,,.故選:C.【答案點睛】本題考查雙曲線的性質、雙曲線定義、圓的切線性質,意在考查直觀想象、邏輯推理和數學計算能力,屬于中檔題.5、B【答案解析】

由題意,可設直線的方程為,利用韋達定理判斷第一個結論;將代入拋物線的方程可得,,從而,,進而判斷第二個結論;設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,進而判斷第三個結論.【題目詳解】解:由題意,可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據拋物線的對稱性可知,,兩點關于軸對稱,所以直線軸.所以②正確.如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以③不正確.故選:B.【答案點睛】本題主要考查拋物線的定義與幾何性質、直線與拋物線的位置關系等基礎知識,考查運算求解能力、推理論證能力和創新意識,考查數形結合思想、化歸與轉化思想,屬于難題.6、C【答案解析】試題分析:根據充分條件和必要條件的定義進行判斷即可.解:在等差數列{an}中,若a2>a1,則d>0,即數列{an}為單調遞增數列,若數列{an}為單調遞增數列,則a2>a1,成立,即“a2>a1”是“數列{an}為單調遞增數列”充分必要條件,故選C.考點:必要條件、充分條件與充要條件的判斷.7、B【答案解析】

設出棱長,通過直線與直線的垂直判斷直線與直線的平行,推出①的正誤;判斷是的中點推出②正的誤;利用直線與平面垂直推出平面與平面垂直推出③正的誤;建立空間直角坐標系求出異面直線與所成角判斷④的正誤.【題目詳解】解:不妨設棱長為:2,對于①連結,則,即與不垂直,又,①不正確;對于②,連結,,在中,,而,是的中點,所以,②正確;對于③由②可知,在中,,連結,易知,而在中,,,即,又,面,平面平面,③正確;以為坐標原點,平面上過點垂直于的直線為軸,所在的直線為軸,所在的直線為軸,建立如圖所示的直角坐標系;,,,,,;,;異面直線與所成角為,,故.④不正確.故選:.【答案點睛】本題考查命題的真假的判斷,棱錐的結構特征,直線與平面垂直,直線與直線的位置關系的應用,考查空間想象能力以及邏輯推理能力.8、D【答案解析】分析:先研究函數的奇偶性,再研究函數在上的符號,即可判斷選擇.詳解:令,因為,所以為奇函數,排除選項A,B;因為時,,所以排除選項C,選D.點睛:有關函數圖象的識別問題的常見題型及解題思路:(1)由函數的定義域,判斷圖象的左、右位置,由函數的值域,判斷圖象的上、下位置;(2)由函數的單調性,判斷圖象的變化趨勢;(3)由函數的奇偶性,判斷圖象的對稱性;(4)由函數的周期性,判斷圖象的循環往復.9、C【答案解析】

由題意知:,,設,則,在中,列勾股方程可解得,然后由得出答案.【題目詳解】解:由題意知:,,設,則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.【答案點睛】本題考查了幾何概型中的長度型,屬于基礎題.10、B【答案解析】

分成甲單獨到縣和甲與另一人一同到縣兩種情況進行分類討論,由此求得甲被派遣到縣的分法數.【題目詳解】如果甲單獨到縣,則方法數有種.如果甲與另一人一同到縣,則方法數有種.故總的方法數有種.故選:B【答案點睛】本小題主要考查簡答排列組合的計算,屬于基礎題.11、B【答案解析】

利用均值不等式可得,即可求得,進而求得外接球的半徑,即可求解.【題目詳解】由題意易得平面,所以,當且僅當時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【答案點睛】本題以中國傳統文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應用,體現了數學運算、直觀想象等核心素養.12、D【答案解析】分析:根據平面向量的數量積可得,再結合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數量積以及投影的應用問題,也考查了數形結合思想的應用問題.二、填空題:本題共4小題,每小題5分,共20分。13、(-4,2)【答案解析】試題分析:因為當且僅當時取等號,所以考點:基本不等式求最值14、【答案解析】

令可得各項系數和為,得出,根據第一個因式展開式的常數項與第二個因式的展開式含一次項的積與第一個因式展開式含x的一次項與第二個因式常數項的積的和即為展開式中含項,可得解.【題目詳解】令,則得,解得,所以展開式中含項為:,故答案為:【答案點睛】本題主要考查了二項展開式的系數和,二項展開式特定項,賦值法,屬于中檔題.15、【答案解析】

基本事件總數,這3個點共線的情況有兩種和,由此能求出這3個點不共線的概率.【題目詳解】解:為矩形的對角線的交點,現從,,,,這5個點中任選3個點,基本事件總數,這3個點共線的情況有兩種和,這3個點不共線的概率為.故答案為:.【答案點睛】本題考查概率的求法,考查對立事件概率計算公式等基礎知識,考查運算求解能力,屬于基礎題.16、【答案解析】

利用奇函數的定義得出,結合對數的運算性質可求得實數的值.【題目詳解】由于函數為奇函數,則,即,,整理得,解得.當時,真數,不合乎題意;當時,,解不等式,解得或,此時函數的定義域為,定義域關于原點對稱,合乎題意.綜上所述,.故答案為:.【答案點睛】本題考查利用函數的奇偶性求參數,考查了函數奇偶性的定義和對數運算性質的應用,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【答案解析】

原不等式等價于在恒成立,令,,求出在上的最小值后可得的取值范圍.【題目詳解】因為在時恒成立,故在恒成立.令,由可得.令,,則為上的增函數,故.故.故答案為:.【答案點睛】本題考查含參數的不等式的恒成立,對于此類問題,優先考慮參變分離,把恒成立問題轉化為不含參數的新函數的最值問題,本題屬于基礎題.18、(1)(2)【答案解析】

(1)當時,利用含有一個絕對值不等式的解法,求得不等式的解集.(2)對分成和兩類,利用零點分段法去絕對值,將表示為分段函數的形式,求得的最小值,進而求得的取值范圍.【題目詳解】(1)當時,由得由得解:,得∴當時,關于的不等式的解集為(2)①當時,,所以在上是減函數,在是增函數,所以,由題設得,解得.②當時,同理求得.綜上所述,的取值范圍為.【答案點睛】本小題主要考查含有一個絕對值不等式的求法,考查利用零點分段法解含有兩個絕對值的不等式,屬于中檔題.19、(1)(2)(3)【答案解析】試題分析:(1);(2)由橢圓對稱性,知,所以,此時直線方程為,故.(3)設,則,通過直線和橢圓方程,解得,,所以,即存在.試題解析:(1)設橢圓方程為,由題意知:解之得:,所以橢圓方程為:(2)若,由橢圓對稱性,知,所以,此時直線方程為,由,得,解得(舍去),故.(3)設,則,直線的方程為,代入橢圓方程,得,因為是該方程的一個解,所以點的橫坐標,又在直線上,所以,同理,點坐標為,,所以,即存在,使得.20、(1).(2).【答案解析】

由已知利用正弦定理,同角三角函數基本關系式可求,結合范圍,可求,由已知利用二倍角的余弦函數公式可得,結合范圍,可求A,根據三角形的內角和定理即可解得C的值.由及正弦定理可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論