




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2023年高考數學模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知為圓:上任意一點,若線段的垂直平分線交直線于點,則點的軌跡方程為( )ABC()D()2自2019
2、年12月以來,在湖北省武漢市發現多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強的傳染性各級政府反應迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內.某社區按上級要求做好在鄂返鄉人員體格檢查登記,有3個不同的住戶屬在鄂返鄉住戶,負責該小區體格檢查的社區診所共有4名醫生,現要求這4名醫生都要分配出去,且每個住戶家里都要有醫生去檢查登記,則不同的分配方案共有( )A12種B24種C36種D72種3a為正實數,i為虛數單位,則a=( )A2BCD14執行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關于的判斷條件是( )ABCD5已知與之間的一組數據:12343.24.87.5
3、若關于的線性回歸方程為,則的值為( )A1.5B2.5C3.5D4.56已知復數(為虛數單位),則下列說法正確的是( )A的虛部為B復數在復平面內對應的點位于第三象限C的共軛復數D7已知雙曲線(,),以點()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()ABCD8已知類產品共兩件,類產品共三件,混放在一起,現需要通過檢測將其區分開來,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件類產品或者檢測出3件類產品時,檢測結束,則第一次檢測出類產品,第二次檢測出類產品的概率為( )ABCD9已知數列是以1為首項,2為公差的等差數列,是以1為首項,2為公比的等比數列,設,則
4、當時,的最大值是( )A8B9C10D1110一個封閉的棱長為2的正方體容器,當水平放置時,如圖,水面的高度正好為棱長的一半若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,則容器里水面的最大高度為( )ABCD11已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為( )ABCD12下列函數中,值域為R且為奇函數的是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13設等差數列的前項和為,若,則_,的最大值是_.14已知函數,若對于任意正實數,均存在以為三邊邊長的三角形,則實數k的取值范圍是_.15已知, 是互相垂直的單位向量,若 與的夾角為60,則實數的
5、值是_16復數(其中i為虛數單位)的共軛復數為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.18(12分)已知橢圓經過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.19(12分)如圖,平面四邊形中,是上的一點,是的中點,以為折痕把折起,使點到達點的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.20(12分)已知,且滿足,證明:.21(12分)設,函數,其中為自然對數的底數.(1)設函數.若,試判斷函數與的圖像在區
6、間上是否有交點;求證:對任意的,直線都不是的切線;(2)設函數,試判斷函數是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.22(10分)在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的參數方程為(為參數),直線經過點且傾斜角為.(1)求曲線的極坐標方程和直線的參數方程;(2)已知直線與曲線交于,滿足為的中點,求.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】如圖所示:連接,根據垂直平分線知,故軌跡為雙曲線,計算得到答案.【詳解】如圖所示:連接,根據垂直平分線知,故,故軌跡為雙曲線,故,
7、故軌跡方程為.故選:.【點睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關鍵.2C【解析】先將4名醫生分成3組,其中1組有2人,共有種選法,然后將這3組醫生分配到3個不同的住戶中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數為種.故選:C【點睛】此題考查的是排列組合知識,解此類題時一般先組合再排列,屬于基礎題.3B【解析】,選B.4B【解析】根據程序框圖,逐步執行,直到的值為63,結束循環,即可得出判斷條件.【詳解】執行框圖如下:初始值:,第一步:,此時不能輸出,繼續循環;第二步:,此時不能輸出,繼續循環;第三步:,此時不能輸出,繼續循環;第四步:,此時不能輸出,繼續循環;
8、第五步:,此時不能輸出,繼續循環;第六步:,此時要輸出,結束循環;故,判斷條件為.故選B【點睛】本題主要考查完善程序框圖,只需逐步執行框圖,結合輸出結果,即可確定判斷條件,屬于常考題型.5D【解析】利用表格中的數據,可求解得到代入回歸方程,可得,再結合表格數據,即得解.【詳解】利用表格中數據,可得又,解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.6D【解析】利用的周期性先將復數化簡為即可得到答案.【詳解】因為,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內對應的點為,在第二象限,B錯誤;的共軛復數為,C錯誤;,D正
9、確.故選:D.【點睛】本題考查復數的四則運算,涉及到復數的虛部、共軛復數、復數的幾何意義、復數的模等知識,是一道基礎題.7A【解析】求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點,且,則可根據圓心到漸近線距離為列出方程,求解離心率【詳解】不妨設雙曲線的一條漸近線與圓交于,因為,所以圓心到的距離為:,即,因為,所以解得故選A【點睛】本題考查雙曲線的簡單性質的應用,考查了轉化思想以及計算能力,屬于中檔題對于離心率求解問題,關鍵是建立關于的齊次方程,主要有兩個思考方向,一方面,可以從幾何的角度,結合曲線的幾何性質以及題目中的幾何關系建立方程;另一方面,可以從代數的角度,結合曲線方程的
10、性質以及題目中的代數的關系建立方程.8D【解析】根據分步計數原理,由古典概型概率公式可得第一次檢測出類產品的概率,不放回情況下第二次檢測出類產品的概率,即可得解.【詳解】類產品共兩件,類產品共三件,則第一次檢測出類產品的概率為;不放回情況下,剩余4件產品,則第二次檢測出類產品的概率為;故第一次檢測出類產品,第二次檢測出類產品的概率為;故選:D.【點睛】本題考查了分步乘法計數原理的應用,古典概型概率計算公式的應用,屬于基礎題.9B【解析】根據題意計算,解不等式得到答案.【詳解】是以1為首項,2為公差的等差數列,.是以1為首項,2為公比的等比數列,.,解得.則當時,的最大值是9.故選:.【點睛】本
11、題考查了等差數列,等比數列,f分組求和,意在考查學生對于數列公式方法的靈活運用.10B【解析】根據已知可知水面的最大高度為正方體面對角線長的一半,由此得到結論【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【點睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎題11D【解析】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,
12、所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質,考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.12C【解析】依次判斷函數的值域和奇偶性得到答案.【詳解】A. ,值域為,非奇非偶函數,排除; B. ,值域為,奇函數,排除;C. ,值域為,奇函數,滿足; D. ,值域為,非奇非偶函數,排除;故選:.【點睛】本題考查了函數的值域和奇偶性,意在考查學生對于函數知識的綜合應用.二、填空題:本題共4小題,每小題5分,共20分。13 【解析】利用等差數列前項和公式,列出方程組,求出首項和公差的值,利用等差數列的通項公式可求出數列的通項公式,可求出的表達式,然后利用雙勾
13、函數的單調性可求出的最大值.【詳解】(1)設等差數列的公差為,則,解得,所以,數列的通項公式為;(2),令,則且,由雙勾函數的單調性可知,函數在時單調遞減,在時單調遞增,當或時,取得最大值為.故答案為:;.【點睛】本題考查等差數列的通項公式、前項和的求法,考查等差數列的性質等基礎知識,考查運算求解能力,是中檔題14【解析】根據三角形三邊關系可知對任意的恒成立,將的解析式用分離常數法變形,由均值不等式可得分母的取值范圍,則整個式子的取值范圍由的符號決定,故分為三類討論,根據函數的單調性求出函數值域,再討論,轉化為的最小值與的最大值的不等式,進而求出的取值范圍.【詳解】因為對任意正實數,都存在以為
14、三邊長的三角形,故對任意的恒成立,令,則,當,即時,該函數在上單調遞減,則;當,即時,當,即時,該函數在上單調遞增,則,所以,當時,因為,所以,解得;當時,滿足條件;當時,且,所以,解得,綜上,故答案為:【點睛】本題考查參數范圍,考查三角形的構成條件,考查利用函數單調性求函數值域,考查分類討論思想與轉化思想.15【解析】根據平面向量的數量積運算與單位向量的定義,列出方程解方程即可求出的值【詳解】解:由題意,設(1,0),(0,1),則(,1),(1,);又夾角為60,()()2cos60,即,解得【點睛】本題考查了單位向量和平面向量數量積的運算問題,是中檔題16【解析】利用復數的乘法運算求出,
15、再利用共軛復數的概念即可求解.【詳解】由,則.故答案為:【點睛】本題考查了復數的四則運算以及共軛復數的概念,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)證明見解析;(2).【解析】(1)取中點,連接,根據等腰三角形的性質得到,利用全等三角形證得,由此證得平面,進而證得平面平面.(2)由(1)知平面,即是四面體的面上的高,結合錐體體積公式,求得四面體的體積.【詳解】(1)證明:如圖,取中點,連接,由則,則,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面體的面上的高,且.在中,由勾股定理易知故四面體的體積【點睛】本小題主要考查面面垂直的證明,考
16、查錐體體積計算,考查空間想象能力和邏輯推理能力,屬于中檔題.18(1);(2)見解析.【解析】(1)根據題意得出關于、的方程組,解出、的值,進而可得出橢圓的標準方程;(2)設點、,設直線的方程為,將該直線的方程與橢圓的方程聯立,并列出韋達定理,由向量的坐標運算可求得點的坐標表達式,并代入韋達定理,消去,可得出點的橫坐標,進而可得出結論.【詳解】(1)由題意得,解得,.所以橢圓的方程是;(2)設直線的方程為,、,由,得.,則有,由,得,由,可得,綜上,點在定直線上.【點睛】本題考查橢圓方程的求解,同時也考查了點在定直線上的證明,考查計算能力與推理能力,屬于中等題.19(1)見解析;(2)【解析】
17、(1)要證平面平面,只需證平面,而,所以只需證,而由已知的數據可證得為等邊三角形,又由于是的中點,所以,從而可證得結論;(2)由于在中,而平面平面,所以點在平面的投影恰好為的中點,所以如圖建立空間直角坐標系,利用空間向量求解.【詳解】(1)由,所以平面四邊形為直角梯形,設,因為.所以在中,則,又,所以,由,所以為等邊三角形,又是的中點,所以,又平面,則有平面,而平面,故平面平面.(2)解法一:在中,取中點,所以,由(1)可知平面平面,平面平面,所以平面,以為坐標原點,方向為軸方向,建立如圖所示的空間直角坐標系,則,設平面的法向量,由得取,則設直線與平面所成角大小為,則,故直線與平面所成角的正弦
18、值為. 解法二:在中,取中點,所以,由(1)可知平面平面,平面平面,所以平面,過作于,連,則由平面平面,所以,又,則平面,又平面所以,在中,所以,設到平面的距離為,由,即,即,可得,設直線與平面所成角大小為,則.故直線與平面所成角的正弦值為.【點睛】此題考查的是立體幾何中的證明面面垂直和求線面角,考查學生的轉化思想和計算能力,屬于中檔題.20證明見解析【解析】將化簡可得,由柯西不等式可得證明.【詳解】解:因為,所以,又, 所以,當且僅當時取等號.【點睛】本題主要考查柯西不等式的應用,相對不難,注意已知條件的化簡及柯西不等式的靈活運用.21(1)函數與的圖象在區間上有交點;證明見解析;(2)且;【解析】(1)令,結合函數零點的判定定理判斷即可;設切點橫坐標為,求出切線方程,得到,根據函數的單調性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數的單調區間,確定的范圍即可【詳解】解:(1)當時,函數,令,則,故,又函數在區間上的圖象是不間斷曲線,故函數在區間上有零點,故函數與的圖象在區間上有交點;證明:假設存
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公室內醫患關系建立與維護的藝術
- 從電商到智慧零售區塊鏈技術的引領作用
- 私密護理培訓課件
- 辦公室采購的未來區塊鏈技術在供應鏈的助力
- 健康醫療行業內的專業服務與醫患互動設計
- 個人健康信息在商業活動中的使用界限與監管
- 專利管理的新模式區塊鏈在創新領域的應用
- 農產品清潔、分選及分級操作聯合機械企業縣域市場拓展與下沉戰略研究報告
- 種子丸化處理機企業ESG實踐與創新戰略研究報告
- 往復式擠出機企業縣域市場拓展與下沉戰略研究報告
- 安徽恒星新材料科技有限公司年產6萬噸新型高品質電子級及多功能環氧樹脂項目環評報告
- 光伏支架及組件安裝施工方案(最終版)
- 04S520埋地塑料排水管道施工標準圖集OSOS
- 220KV輸電線路組塔施工方案
- 高中班級讀書活動方案
- 國際經濟學教案doc
- 六年級數學下冊《圖形的運動》
- 2022-2023學年北京海淀人大附數學八年級第二學期期末復習檢測試題含解析
- 高中歷史雙向細目表
- 2022-2023學年北京石景山數學七下期中檢測試題含解析
- 蘇教版四年級下冊數學期中復習
評論
0/150
提交評論