




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、三角形的內角和與外角和教學目的1使學生在操作活動中,探索并了解三角形的內角和、外角的兩條性質以及三角形的外角和2能利用三角形內角和外角和以及外角的兩條性質進行有關計算重點、難點1重點:掌握三角形的內角和、外角和以及外角的性質2難點:在性質證明的過程中,涉及到添加輔助線來溝通證明思路的方法教學過程一、活動引入:你有什么辦法可以探究它呢?活動內容:(1):通過具體的度量,驗證三角形的內角和(2)方法二:剪拼法把三個角拼在一起試試看?2圖2通過測量發現三角形的三個內角和是180從剛才拼角的過程你能想出證明的方法嗎?已知:ABC.求證:ZA+ZB+ZC=180.5423證明:如圖,過A作EFBCZ2=
2、Z4(兩直線平行,內錯角相等)同理:Z3=Z5(兩直線平行,內錯角相等)VZ4+Z1+Z5=180(平角定義)AZ1+Z2+Z3=180(等量代換)2、BC方法一:過A點作DEHBC:DE/BC.ZDAB=ZB,ZEAC=ZC(兩直線平行,內錯角相等):ZDAB+ZBAC+ZEAC=180.ZBAC+ZB+ZC=180(等量代換)方法二:作BC的延長線CD,過點C作射線CEIIBA.:CEBA:.ZB=ZECD(兩直線平行,同位角相等)ZA=ZACE(兩直線平行,內錯角相等):ZBCA+ZACE+ZECD=180.ZA+ZB+ZACB=180(等量代換)2直角三角形兩銳角之間的關系由三角形的內
3、角和等于180,容易得到下面的結論直角三角形的兩個銳角互余新知應用:比一比,賽一賽在ABC中,ZA=35,ZB=43。,則ZC=102.(2)在ABC中,ZC+ZB=140。則ZA=40.(3)在AABC中,ZA=40ZA=2ZB,則ZC=120.三角形的外角定義:三角形的一邊與另一邊的延長線組成的角.如圖,ABC中,Z1是一個外角.3.角形的外角及其性質我們已經知道三角形的內角和等于180.現在我們探索三角形的外角及外角的性質.如醯示,一個三角形的每一個外角對應一個相鄰的內角和兩個不相鄰的內角,不相鄰內角ZB.ZC與它不相鄰.的兩個內角是與這個外角不同頂點的兩個內角.問:三角形的外角與和它相
4、鄰內角有什么關系?(互補)探索三角形的一個外角與它不相鄰的兩個內角之間的關系.請同學們拿出一張白紙,在白紙上畫出如教科書圖8.27所示的圖形,然后把ZACB、ZBAC剪下拼在一起放到ZCBD上,使點A、C、B重合,看看會出現什么結果,與同伴交流一下,結果是否一樣.請你用文字語言敘述三角形的一個外角與它不相鄰的兩個內角間的關系.由此可知:三角形外角有兩條性質:三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角.如圖:。是4ABCBC上一點,貝9有ZADC=ZDAB+ZABD,ZADCZDAB,ZADCZABD問:ZADB=Z()+Z()探索證明“三角形的一
5、個外角等于和它不相鄰的兩個內角和”的方法.你能用“三角形的內角和等于180”來說明三角形的一個外角等于和它不相鄰的兩個內角和呢?你能否從前面的操作中,得到說明三角形外角性質的另一種方法?探索三角形的外角和與三角形的每個內角相鄰的外角分別有兩個,這兩個外角是對頂角,從與每個內角相等的兩個外角中分別取一個相加,得到的和稱為三角形的外角和.探索三角形的外角和是多少?探索三角形的外角和是360的證明方法.二、知識應用1.如圖,D是ABC的邊BC上一點,ZB=ZBAD,ZADC=80,ZBAC=70.求:ZB的度數;ZC的度數.解:(1)-ZZADC是/ABD的外角(已知).ZADC=ZB+ZBAD=80(三角形的一個外角等于與它不相鄰的兩個內角的和)/.ZB二80ox1二40。(等量代換)2又TZB二ZBAD(已知)ZB+ZBAC+ZC=18
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 神經科學中的生物化學試題及答案
- 物理學原理及應用試題及答案
- 營中初一招生試卷及答案
- 建筑施工安全工程師應該掌握的題
- 應用練習大學化學考試試題及答案
- 電子的性質與應用試題及答案
- 家庭空間設計中的功能與美學平衡考核試題及答案
- 大學物理重點難點解析試題及答案
- 2025年3M膠項目發展計劃
- 科學素質測試題及答案
- 某縣公共實訓基地建設項目可研報告
- 2025年納米鎳粉市場規模分析
- 2024年山東淄博中考滿分作文《從“閱”到“悅”》5
- 拒絕校園霸凌守護美好校園
- 不要慌太陽下山有月光二部合唱簡譜
- 中西文化比較與跨文化交際知到課后答案智慧樹章節測試答案2025年春南開大學
- 2025年農村土地使用權益永久轉租協議范本
- 病歷書寫規范培訓課件
- 2025年滬科版七年級數學下冊全套測試卷
- 2025年山東地區光明電力服務公司招聘筆試參考題庫含答案解析
- (中等生篇)2025年高考備考高中歷史個性化分層教輔之宋元時期
評論
0/150
提交評論