2021-2022學年天津市第二南開高三下學期一模考試數學試題含解析_第1頁
2021-2022學年天津市第二南開高三下學期一模考試數學試題含解析_第2頁
2021-2022學年天津市第二南開高三下學期一模考試數學試題含解析_第3頁
2021-2022學年天津市第二南開高三下學期一模考試數學試題含解析_第4頁
2021-2022學年天津市第二南開高三下學期一模考試數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知m為實數,直線:,:,則“”是“”的( )A充要條件B充分不必要條件C必要不充分條件D既不充分也不必要條件2劉徽(約公元225年-295年),魏晉期間偉大的數學家,中國古典數學理

2、論的奠基人之一他在割圓術中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,得到的近似值為( )ABCD3是的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件4設,點,設對一切都有不等式 成立,則正整數的最小值為( )ABCD5一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是( )ABCD6雙曲線x26-y

3、23=1的漸近線與圓(x3)2y2r2(r0)相切,則r等于()A3B2C3D67已知集合,則集合的真子集的個數是( )A8B7C4D38直線與圓的位置關系是( )A相交B相切C相離D相交或相切9已知集合,則全集則下列結論正確的是( )ABCD10如圖,設為內一點,且,則與的面積之比為ABCD11從裝有除顏色外完全相同的3個白球和個黑球的布袋中隨機摸取一球,有放回的摸取5次,設摸得白球數為,已知,則ABCD12函數的圖象大致為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13小李參加有關“學習強國”的答題活動,要從4道題中隨機抽取2道作答,小李會其中的三道題,則抽到的2道題小李

4、都會的概率為_.14函數的定義域是_(寫成區間的形式)15設(其中為自然對數的底數),若函數恰有4個不同的零點,則實數的取值范圍為_.16過直線上一點作圓的兩條切線,切點分別為,則的最小值是_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)將棱長為的正方體截去三棱錐后得到如圖所示幾何體,為的中點.(1)求證:平面;(2)求二面角的正弦值.18(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數k使得以線段為直徑的圓恰好經過坐標原點O?若存在,求出k的值;若不存在,請說明理由.19(12分)在中,角的對

5、邊分別為,已知(1)求角的大小;(2)若,求的面積20(12分)已知拋物線的焦點為,直線交于兩點(異于坐標原點O).(1)若直線過點,,求的方程;(2)當時,判斷直線是否過定點,若過定點,求出定點坐標;若不過定點,說明理由.21(12分)已知函數(1)當(為自然對數的底數)時,求函數的極值;(2)為的導函數,當,時,求證:22(10分)如圖,在四棱錐PABCD中,底面ABCD為菱形,PA底面ABCD,BAD60,AB=PA4,E是PA的中點,AC,BD交于點O.(1)求證:OE平面PBC;(2)求三棱錐EPBD的體積.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個

6、選項中,只有一項是符合題目要求的。1A【解析】根據直線平行的等價條件,求出m的值,結合充分條件和必要條件的定義進行判斷即可【詳解】當m=1時,兩直線方程分別為直線l1:x+y1=0,l2:x+y2=0滿足l1l2,即充分性成立,當m=0時,兩直線方程分別為y1=0,和2x2=0,不滿足條件當m0時,則l1l2,由得m23m+2=0得m=1或m=2,由得m2,則m=1,即“m=1”是“l1l2”的充要條件,故答案為:A【點睛】(1)本題主要考查充要條件的判斷,考查兩直線平行的等價條件,意在考查學生對這些知識的掌握水平和分析推理能力.(2) 本題也可以利用下面的結論解答,直線和直線平行,則且兩直線

7、不重合,求出參數的值后要代入檢驗看兩直線是否重合.2A【解析】設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A【點睛】本題考查三角形面積公式的應用,考查閱讀分析能力.3B【解析】分別判斷充分性和必要性得到答案.【詳解】所以 (逆否命題)必要性成立當,不充分故是必要不充分條件,答案選B【點睛】本題考查了充分必要條件,屬于簡單題.4A【解析】先求

8、得,再求得左邊的范圍,只需,利用單調性解得t的范圍.【詳解】由題意知sin,隨n的增大而增大,,,即,又f(t)=在t上單增,f(2)= -10,正整數的最小值為3.【點睛】本題考查了數列的通項及求和問題,考查了數列的單調性及不等式的解法,考查了轉化思想,屬于中檔題.5D【解析】設圓錐的母線長為l,底面半徑為R,再表達圓錐表面積與球的表面積公式,進而求得即可得圓錐軸截面底角的大小.【詳解】設圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎題.6A【解析】由圓心到漸近線的距離等于半徑列方程求解即可

9、.【詳解】雙曲線的漸近線方程為y22x,圓心坐標為(3,0)由題意知,圓心到漸近線的距離等于圓的半徑r,即r223-0222+1=3.答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.7D【解析】轉化條件得,利用元素個數為n的集合真子集個數為個即可得解.【詳解】由題意得,集合的真子集的個數為個.故選:D.【點睛】本題考查了集合的化簡和運算,考查了集合真子集個數問題,屬于基礎題.8D【解析】由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結論【詳解】解:由題意,圓的圓心為,半徑,圓心到直線的距離為,故選:D【點睛】本題主要考查直線與圓的位置關系,屬于基礎題9D

10、【解析】化簡集合,根據對數函數的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【詳解】由,則,故,由知,因此,故選:D【點睛】本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.10A【解析】作交于點,根據向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,且,所以又,所以,即,所以本題答案為A.【點睛】本題考查三角函數與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.11B【解析】由題意知,由,知,由此能求出【詳解】由題意知,解得,故選:B【點睛】本題考查離散型隨機變量的方差的

11、求法,解題時要認真審題,仔細解答,注意二項分布的靈活運用12A【解析】根據函數的奇偶性和單調性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數,排除C和D.當時,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點睛】本小題主要考查函數圖像的識別,考查利用導數研究函數的單調區間和極值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】從四道題中隨機抽取兩道共6種情況,抽到的兩道全都會的情況有3種,即可得到概率.【詳解】由題:從從4道題中隨機抽取2道作答,共有種,小李會其中的三道題,則抽到的2道題小李都會的情況共有種,所以其概率為.故

12、答案為:【點睛】此題考查根據古典概型求概率,關鍵在于根據題意準確求出基本事件的總數和某一事件包含的基本事件個數.14【解析】要使函數有意義,需滿足,即,解得,故函數的定義域是15【解析】求函數,研究函數的單調性和極值,作出函數的圖象,設,若函數恰有4個零點,則等價為函數有兩個零點,滿足或,利用一元二次函數根的分布進行求解即可【詳解】當時,由得:,解得,由得:,解得,即當時,函數取得極大值,同時也是最大值,(e),當,當,作出函數的圖象如圖,設,由圖象知,當或,方程有一個根,當或時,方程有2個根,當時,方程有3個根,則,等價為,當時,若函數恰有4個零點,則等價為函數有兩個零點,滿足或,則,即(1

13、) 解得:,故答案為:【點睛】本題主要考查函數與方程的應用,利用換元法進行轉化一元二次函數根的分布以及求的導數,研究函數的的單調性和極值是解決本題的關鍵,屬于難題16【解析】由切線的性質,可知,切由直角三角形PAO,PBO,即可設,進而表示,由圖像觀察可知進而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數求出最小值.【詳解】由題可知,設,由切線的性質可知,則顯然,則或(舍去)因為令,則,由雙勾函數單調性可知其在區間上單調遞增,所以故答案為:【點睛】本題考查在以直線與圓的位置關系為背景下求向量數量積的最值問題,應用函數形式表示所求式子,進而利用分析函數單調性或基本不等式求得最值,屬于較

14、難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)見解析;(2).【解析】(1)取的中點,連接、,連接,證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結論;(2)以點為坐標原點,、所在直線分別為、軸建立空間直角坐標系,利用空間向量法可求得二面角的余弦值,進而可求得其正弦值.【詳解】(1)取中點,連接、,且,四邊形為平行四邊形,且,、分別為、中點,且,則四邊形為平行四邊形,且,且,且,所以,四邊形為平行四邊形,且,四邊形為平行四邊形,平面,平面,平面;(2)以點為坐標原點,、所在直線分別為、軸建立如下圖所示的空間直角坐標系,則、,設平面的法向量為,

15、由,得,取,則,設平面的法向量為,由,得,取,則,因此,二面角的正弦值為.【點睛】本題考查線面平行的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.18(1);(2)存在,當時,以線段為直徑的圓恰好經過坐標原點O.【解析】(1)設橢圓的焦半距為,利用離心率為,橢圓的長軸長為1列出方程組求解,推出,即可得到橢圓的方程(2)存在實數使得以線段為直徑的圓恰好經過坐標原點設點,將直線的方程代入,化簡,利用韋達定理,結合向量的數量積為0,轉化為:求解即可【詳解】解:(1)設橢圓的焦半距為c,則由題設,得,解得,所以,故所求橢圓C的方程為(2)存在實數k使得以線段為直徑的圓

16、恰好經過坐標原點O.理由如下:設點,將直線的方程代入,并整理,得.(*)則,因為以線段為直徑的圓恰好經過坐標原點O,所以,即.又,于是,解得, 經檢驗知:此時(*)式的,符合題意.所以當時,以線段為直徑的圓恰好經過坐標原點O【點睛】本題考查橢圓方程的求法,橢圓的簡單性質,直線與橢圓位置關系的綜合應用,考查計算能力以及轉化思想的應用,屬于中檔題.19(1);(2)【解析】(1)利用正弦定理邊化角,再利用二倍角的正弦公式與正弦的和角公式化簡求解即可.(2)由(1)有,根據正弦定理可得,進而求得的值,再根據三角形的面積公式求解即可.【詳解】(1)由,得,得,由正弦定理得,顯然,同時除以,得.所以.所

17、以.顯然,所以,解得.又,所以.(2)若,由正弦定理得,得,解得.又,所以.【點睛】本題主要考查了正余弦定理與面積公式在解三角形中的運用,需要根據題意用正弦定理進行邊角互化,再根據三角恒等變換進行化簡求解等.屬于中檔題.20(1)(2)直線過定點【解析】設.(1)由題意知,.設直線的方程為,由得,則,由根與系數的關系可得,所以.由,得,解得.所以拋物線的方程為.(2)設直線的方程為,由得,由根與系數的關系可得, 所以,解得.所以直線的方程為,所以時,直線過定點.21(1)極大值,極小值;(2)詳見解析.【解析】首先確定函數的定義域和;(1)當時,根據的正負可確定單調性,進而確定極值點,代入可求得極值;(2)通過分析法可將問題轉化為證明,設,令,利用導數可證得,進而得到結論.【詳解】由題意得:定義域為,(1)當時,當和時,;當時,在,上單調遞增,在上單調遞減,極大值為,極小值為.(2)要證:,即證:,即證:,化簡可得:,即證:,設,令,則,在上單調遞增,則由,從而有:.【點睛】本題考查導數在研究函數中的應用,涉及到函數極值的求解、利用導數證明不等式的問題;本題不等式證明的關鍵是能夠將多個變量的問題轉化為一個變量的問題,通過構造函數的方式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論