




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、曲線上一點處的切線1.什么叫做平均變化率什么叫做平均變化率幾何意義:幾何意義:平均變化率平均變化率近似地近似地刻畫了曲線在某個刻畫了曲線在某個區間上區間上的的變化趨勢變化趨勢一般地,函數一般地,函數f(x)在區間在區間x1,x2上的平均變化率上的平均變化率曲線曲線y=f(x) 上兩點上兩點 連線的斜率。連線的斜率。從上面的圖形來看:曲線在點曲線在點 P附近看上去幾乎成了直線附近看上去幾乎成了直線繼續放大,曲線在點繼續放大,曲線在點P附近將逼近一條確定的直線附近將逼近一條確定的直線l,這條直線是過點這條直線是過點P的所有直線中最逼近曲線的一條直線的所有直線中最逼近曲線的一條直線PQoxyy=f(
2、x)割割線線切線切線l 如圖,設如圖,設Q為曲線為曲線C上不同于上不同于P的一點,直線的一點,直線PQ稱為曲線的稱為曲線的割線割線. yOxPQ切線隨著點隨著點Q沿曲線沿曲線C向點向點P運動,直線運動,直線PQ在點在點P附近逼近曲線附近逼近曲線C, 當點當點Q無限逼近點無限逼近點P時,直線時,直線PQ最終就成為經過點最終就成為經過點P處最逼近曲線的直線處最逼近曲線的直線l,這條直線這條直線l也稱為也稱為曲線在點曲線在點P處的切線處的切線這種方法叫這種方法叫割線逼近切線割線逼近切線.利用直尺,用割線逼近切線的方法作出利用直尺,用割線逼近切線的方法作出下列曲線在下列曲線在P點處的切線點處的切線 P
3、PP為已知曲線已知曲線C上的一點,上的一點,試求試求f (x)=x2在點在點(2,4)處的切線斜率處的切線斜率Q),(),(分析:設)x(f ,xQ42PQQ2x2x4x2x4)x( fkPQQQ2QQQPQ 的斜率為的斜率為則割線則割線;PPQPQ斜斜率率從從而而割割線線斜斜率率逼逼近近切切線線處處的的切切線線,逼逼近近點點割割線線時時,沿沿曲曲線線逼逼近近點點當當;4k2xPQPQQ無無限限趨趨近近于于常常數數時時,無無限限趨趨近近于于即即點點橫橫坐坐標標時時,點點橫橫坐坐標標無無限限趨趨近近于于當當. 442x)x(f2切切線線斜斜率率為為)處處的的,在在點點(從從而而曲曲線線 . 44
4、2xf(x)4k0 x2PQ)處處的的切切線線斜斜率率為為,在在點點(從從而而曲曲線線,無無限限趨趨近近于于常常數數時時,無無限限趨趨近近于于當當 的斜率則割線設解PQ),)x2( , x2(Q),4 , 2(P:2 試求試求f (x)=x2在點在點(2,4)處的切線斜率處的切線斜率x4xxx4x4)x2(k22PQ),(),(解:設2QQx,xQ42P2x2x4xkPQQQ2QPQ的斜率為則割線. 442xf(x)4k2x2PQQ斜率為)處的切線,在點(從而曲線,無限趨近于常數時,無限趨近于當練習練習:試求試求f (x)=x2+1在在x=1處的切線斜率處的切線斜率. 211xf(x)2k0
5、x2PQ處的切線斜率為在點從而曲線,無限趨近于常數時,無限趨近于當x的斜率則割線設由題意解PQ),1)x1 ( , x1 (Q),2 , 1 (P2,: 練習:練習:試求試求f (x)=x2+1在在x=1處的切線斜率處的切線斜率當當割割 線線 逼逼 近近 切切 線,線,割線斜率逼近切線斜率割線斜率逼近切線斜率x2xxx2x2 1)x1(k22PQyxOy = f(x) xx0 x0+ xPQf (x0+ x) f (x0)切線切線割線割線2.求出割線求出割線PQ的斜率的斜率 ,并化簡并化簡. x)(x)xx(k00PQff求曲線求曲線y=f(x)上一點上一點P(x0,f(x0)處切線斜率的一般
6、步驟處切線斜率的一般步驟:3. 令令x 趨向于趨向于0,若上式中的割線斜率若上式中的割線斜率“逼近逼近”一個常數,一個常數, 則其即為所求切線斜率則其即為所求切線斜率1.設曲線上另一點設曲線上另一點Q(x0 +x,f(x0 + x)(即即 y)變式變式1.已知函數已知函數f(x)=x2,求曲線求曲線y=f(x)在在x=-1處的切線處的切線斜率和切線方程斜率和切線方程變式變式2.已知函數已知函數f(x)=x-1,求曲線求曲線y=f(x)在在x=-1處的切處的切線斜率和切線方程線斜率和切線方程練習:已知練習:已知f(x)= ,求曲線求曲線y=f(x)在在x=0.5處的切線處的切線斜率是什么?斜率是什么?練習練習.已知函數已知函數f(x)=(1-x2)0.5,求曲線求曲線y=f(x)在在x=0.5處處的切線斜率和切線方程的切線斜率和切線方程割線PQP點處的切線Q無限逼近P時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 滑雪公開賽行業深度調研及發展項目商業計劃書
- 創意攝影藝術展覽企業制定與實施新質生產力項目商業計劃書
- 特色主題書店連鎖經營行業深度調研及發展項目商業計劃書
- 教育信息化與IT戰略的未來趨勢
- 醫療信息化進程中的數字化轉型領導力
- 云計算在提升工作效率中的作用
- 如何構建適應數字化時代的職場學習環境
- 部編本三年級家長溝通與參與計劃
- 2025年城市公共交通安全培訓計劃
- 企業內部財務管理的數字化轉型規劃
- 2025國家開放大學《員工勞動關系管理》形考任務1234答案
- 2024-2025湘科版小學科學四年級下冊期末考試卷及答案(三套)
- 2025年包鋼集團公司招聘筆試參考題庫含答案解析
- 【MOOC】保險學概論-中央財經大學 中國大學慕課MOOC答案
- 雷電預警信息接收和響應制度
- VDA6.3 2023 過程審核檢查表-參考表單
- DL∕T 516-2017 電力調度自動化運行管理規程
- 江蘇南通市生育保險津貼待遇申請表
- 絞車對拉安全運輸技術措施
- PKPM中那七個比的詳細出處及調整
- 學生健康檢查表(中華人民共和國預防性健康檢查用表)
評論
0/150
提交評論