




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、精選優質文檔-傾情為你奉上內蒙古赤峰市寧城縣2018屆九年級數學上學期期末試題 親愛的同學:寒假快要到了,祝賀你又完成了一個學期的學習,為了使你度過一個豐富多彩的寒假生活,過一個快樂、幸福的春節,請你認真思考、細心演算,盡情發揮,向一直關心你的人們遞交一份滿意的答卷,祝你成功!請注意: 本試卷滿分150分; 考試時間120分鐘;一、選擇題:(本大題12個小題,每小題3分,共36分,在每小題給出的四個選項中只有一個是正確的,請把答題卡上對應題目所選的選項涂黑)1.下面四個圖案分別是步行標志、禁止行人通行標志、禁止駛入標志和直行標志,其中是中心對稱圖形的是( ) 2下列說法正確的是( ) A三點確
2、定一個圓 B一個三角形只有一個外接圓 C和半徑垂直的直線是圓的切線 D三角形的內心到三角形三個頂點距離相等3用配方法解一元二次方程 +4x-3=0時,原方程可變形為()A(x+2)=1 B.(x+2)=19 C(x+2)=13 D(x+2)=74已知點A(-1,5)在反比例函數的圖象上,則該函數的解析式為( ) A B C D5.如圖,四邊形ABCD內接于O,若四邊形ABCO是平行四邊形,則ADC的大小為( )A45° B50° C60° D75°
3、5題圖 6題圖6如圖是小明設計用手電來測量某古城墻高度的示意圖,點P處放一水平的平面鏡,光線從點A出發經平面鏡反射后剛好射到古城墻CD的頂端C處,已知ABBD,CDBD,且測得AB1.2米,BP1.8米,PD12米, 那么該古城墻的高度是( )A6米 B8米 C18米 D24米7在ABC中,DEBC,若AD1,DB2,則的值為( )A BC D8在一個不透明的盒子里有形狀、大小相同的黃球2個、紅球3個,從盒子里任意摸出1個球,摸到紅球的概率是 ( )A B C D9.二次函數y2x2的圖象可以看做拋物線y2( x-1)2+3怎樣平移得到的. ( )A向左平移1個單位,再向下平移3個單位B向左平
4、移1個單位,再向上平移3個單位 C向右平移1個單位,再向上平移3個單位D向右平移1個單位,再向下平移3個單位10公園有一塊正方形的空地,后來從這塊空地上劃出部分區域栽種鮮花(如圖),原空地一邊減少了1m,另一邊減少了2m,剩余空地的面積為18m2,求原正方形空地的邊長設原正方形的空地的邊長為xm,則可列方程為( )A(x+1)(x+2)=18Bx2-3x+16=0C(x-1)(x-2)=18Dx2+3x+16=0 11如圖,邊長為1的兩個正方形互相重合,按住其中一個不動,將另一個繞頂點A順時針旋轉45°,則這兩個正方形重疊部分的面積是 ( )A. +1 B-1 C. D 10題圖 1
5、1題圖12二次函數y=ax+bx+c(a0)的部分圖象如圖,圖象過點(-1,0),對稱軸為直線x=2,下列結論:拋物線與x軸的另一個交點是(5,0);4a+c2b;4a+b=0;當x-1時,y的值隨x值的增大而增大其中正確的結論有()A1個 B2個 C3個 D4個二、填空題(本大題共有4小題,每小題3分,共12分)13已知扇形AOB的半徑為6cm,圓心角的度數為,若將此扇形圍成一個圓錐的側面,則圍成的圓錐的底面圓的半徑為 cm14小明向如圖所示的正方形ABCD區域內投擲飛鏢,點E是以AB為直徑的半圓與對角線AC的交點如果小明投擲飛鏢一次,則飛鏢落在陰影部分的概率為 .AOxyP14題圖 15題
6、圖 16題圖15.如圖2,點P是反比例函數圖象上任意一點, PAx軸于A,連接PO,則SPAO為 .16. 如圖,二次函數y=ax2+bx+3的圖象經過點A(-1,0)B(3,0),那么一元二次方程ax2+bx=0的根是 .三、解答題(本大題共10小題,滿分102分.解答需寫出文字說明、證明過程和演算步驟)17. (每題4分,共8分)解方程: (1)(x2)-4=0 (2) x-4x-5=0 18.(8分)某新建小區要在一塊等邊三角形內修建一個圓形花壇。(1)要使花壇面積最大,請你用尺規畫出圓形花壇示意圖.(保留作圖痕跡,不寫做法)(2)若這個等邊三角形的周長為36米,請計算出花壇的
7、面積. 19.(8分)一個不透明的口袋中有四個完全相同的小球,把它們分別標號為1,2,3,4.隨機摸取一個小球然后放回,再隨機摸出一個小球,求下列事件的概率:(1)兩次取出的小球標號相同;(2)兩次取出的小球標號的和等于4.20(10分)如圖,一次函數的圖象與反比例函數的圖象相交于A、B兩點。 (1)利用圖中的條件,求反比例函數和一次函數的解析式; (2)根據圖象直接寫出一次函數的值大于反比例函數的x的取值范圍。-12A(2,m)OxyB(-1,-4)21.(10分)如圖,兩個以點O為圓心的同心圓,(1)如圖1,大圓的弦AB交小圓于C,D兩
8、點,試判斷AC與BD的數量關系,并說明理由.(2)如圖2,將大圓的弦AB向下平移使其為小圓的切線,切點為C,證明:AC=BC.(3)在(2)的基礎上,已知AB=20cm,直接寫出圓環的面積.圖1 圖222(10分)每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標系后,ABC的頂點均在格點上,(1)寫出A、B、C的坐標(2)以原點O為中心,將ABC圍繞原點O逆時針旋轉180°得到A1B1C1,畫出A1B1C1(3)求(2)中C到C1經過的路徑以及OB掃過的面積23.(10分)如圖,在RtABC中,B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經過點C,過
9、點C作直線MN,使BCM=2A(1)判斷直線MN與O的位置關系,并說明理由;(2)若OA=4,BCM=60°,求圖中陰影部分的面積24.(12分)已知:如圖所示,在ABC中,B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.(1)如果P,Q分別從A,B同時出發,那么幾秒后,PBQ的面積等于4cm2?(2)如果P,Q分別從A,B同時出發,那么幾秒后,PBQ中PQ的長度等于5cm?(3)在(1)中,當P,Q出發幾秒時,PBQ有最大面積?25.(12分)閱讀理解題:按照一定順序排列著的一
10、列數稱為數列,排在第一位的數稱為第1項,記為,依次類推,排在第位的數稱為第項,記為一般地,如果一個數列從第二項起,每一項與它前一項的比等于同一個常數,那么這個數列叫做等比數列,這個常數叫做等比數列的公比,公比通常用字母表示()如:數列1,3,9,27,為等比數列,其中,公比為則:(1)等比數列3,6,12,的公比為 ,第4項是 (2)如果一個數列,是等比數列,且公比為,那么根據定義可得到:, ,由此可得: (用和的代數式表示)(3)若一等比數列的公比q=2,第2項是10,請求它的第1項與第4項26.(14分)已知,如圖,拋物線與x軸交點坐標為A(1,0),C(-3,0),(1)若已知頂點坐標D
11、為(-1,4)或B點(0,3),選擇適當方式求拋物線的解析式.(2)若直線DH為拋物線的對稱軸,在(1)的基礎上,求線段DK的長度,并求DBC的面積(3)將圖(2)中的對稱軸向左移動,交x軸于點p(m,0)(3<m<1),與線段BC、拋物線的交點分別為點K、Q,用含m的代數式表示QK的長度,并求出當m為何值時,BCQ的面積最大?20172018學年度上學期期末素質測試九年級數學試題(人教版)答案一、選擇題:1-5 CBDCC 6-10 BBBAC 11-12 BB二、填空題:13. 2 14. 15. 3 16. x1=0 ,x2=2 三、解答題:17. (1) x1=4或x2=0
12、 (2) x1=5或x2=-1 每題4分18.解:(1)用尺規作三角形的內切圓如圖4分(2)等邊三角形周長36米,所以邊長12米,據O為內心,所以三角形OBD為Rt且OBD=30°設OD=x, 則OB=2x ,OD= OB-OD 6分即x=(2x)-6,解得,x=12 ,所以花壇面積為=12 8分 19.(1) 4分 (2)8分 18題(1)圖20.(1)反比例函數解析式為,3分一次函數的解析式為y=2x-17分(2)x>2或0>x>-1-10分21.(1)AC=BD,理由是:過O作OEAB,由垂徑定理得AE=BE,CE=DE,AE-CE=BE-DE,即AC=BD4
13、分(2)連接OC,AB是小圓的切線,OCAB,則AC=BC8分(3)S=100cm210分22. (1)A(1,-4),B(5,-4),C(4,-1)3分(2)略6分(3)C到C1經過的路徑l=,8分OB掃過的面積S=10分23.(1)MN是的切線 ,連接OC,OA=OC,BOC=2A, BOC=BCM=2A , OCM =BCM+OCB=BOC+OCB=90° OCMN , MN是的切線6分(2)由(1)知BOC=BCM=60°AOC=120°,在RtBOC中,OA=OC=4,BCO=30°BO=OC=2 ,BC=2, BOC=BCM=2A=60
14、76; AOC=120°S=S - S=-OA.BC=-4 12分24.(1)設t秒后,PBQ的面積等于4cm2,則列方程為:(5-t)×2t×=4,解得t1=1,t2=4(舍),答:1秒后,PBQ的面積等于4cm2.4分(2)設x秒后,PBQ中PQ的長度等于5cm,列方程為:(5-x)2+(2x)2=52,解得x1=0(舍),x2=2,答:2秒后,PBQ中PQ的長度等于5cm。8分(3)設面積為Scm2,時間為t,則S=(5-t)×2t×=-t2+5t,當t=2.5時,面積最大.12分25.(1)2 , 244分(2)an=a1qn-18分(3)5, 40 12分26.解:(1)選擇頂點坐標D為(-1,4)設頂點式解析式求出結果為y=(x+1)2+4設一般式解析式求得解析式為y=x2-2x+3.4分(2)線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車行業技術部年終總結
- 禽類罐頭產品研發趨勢與挑戰考核試卷
- 繅絲技術創新與發展考試考核試卷
- 照明企業社會責任與可持續發展考核試卷
- 皮革制品的質量控制與環境保護策略考核試卷
- 旅館業工程建設項目與物業管理考核試卷
- 印刷機操作與維護培訓考核試卷
- 醫學檢驗性能驗證全流程解析
- 彩墨戲劇人物課件
- 聽聽聲音教學設計
- 2025年裝維智企工程師(三級)復習模擬100題及答案
- 美學《形象設計》課件
- 江蘇省建筑與裝飾工程計價定額(2014)電子表格版
- GB/T 3522-1983優質碳素結構鋼冷軋鋼帶
- 主要電氣設備絕緣電阻檢查記錄
- 探析小學數學作業分層設計與評價獲獎科研報告
- 入團志愿書樣本(空白)
- 2022年續聘申請書
- 單片機病房呼叫系統設計
- 交通信號系統紅綠燈安裝專項施工方案
- DB14∕T 2024-2020 出口水果包裝廠管理規范
評論
0/150
提交評論