




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、1 Exploration research of new cathode materials with high capacity for Li-ion batteryYong YangState Key Lab of Physical Chemistry of Solid Surface, Xiamen UniversityChina2Whatare the major players of the cathode materials Electrode materialsHigh energy densityHigh power densityLayered oxide cathode
2、materialsPolyanion: LFePO4, Spinel, LiMn2O4High energy densityLi2FeMnSiO4;Organic-typeFluorides3Further improvement of layered oxide-based cathode materials1) Nickel-based layered cathode materials:Lattice-dopingSurface coating1) H. S. Liu, et al ; Electrochimica Acta, 2004, 49:1151-1159; Solid Stat
3、e Ionics, 2004, 166:317-3252) Z.R.Zhang, et al; J Power Sources, 2004, 129(1):101-106; J. Phys. Chem. B; 2004, 108, 17546-17552 2) Li-rich Li-Ni-Co-Mn-O system; Very promising system, still more study are needed. E.g. first cycle efficiency, rate capability, safety issues, how choose suitable anode
4、systems.4LiLi(1-x)/3Mn(2-x)/3Nix/3Co3/xO2 Cathode0501001502002503002.02.53.03.54.04.5Voltage / VSpecific Capacity / mAh/g pristine AlF3 coating0.1 CCharge/discharge at 18 mA/g, 2.0 4.8 V The initial discharge capacity is 249 mAh/g, about 100 mAh/g higher than that of LiCoO2.0501001502002503003502.02
5、.53.03.54.04.55.02nd249 mAh/g324.5 mAh/gVoltage / V as-prepared1stCapacity / mAh/g5Layered Oxide-type Cathode MaterialsGas evolution, e.g. O2, CO2High capacity cathode materialsCharging to high voltage 6050100150200250300350-0.50.00.51.01.52.02.53.03.03.54.04.55.0AlF3-coatedVoltage / VIon current /
6、10-11 A/gTime / minO2(m/e = 32)050100150200250300350-0.50.00.51.01.52.02.53.03.03.54.04.55.0O2Voltage / VIon current / 10-11 A/gTime / min(m/e = 32)pristine0501001502002503003500123453.03.54.04.55.0Voltage / VIon current / 10-11 A/gTime / minCO2(m/e = 44)AlF3-coated0501001502002503003500123453.03.54
7、.04.55.0(m/e = 44)Voltage / VIon current / 10-11 A/gTime / minpristineCO2 AlF3 coating layer provides a buffer layer to make oxygen atoms with high activity combine together to form O2 molecules with low oxidation capability to electrolytes.1/45 times7Advantages: Low cost excellent thermal stability
8、 no oxygen evolved at low amount Li+ intercalatedDisadvantages: Lower capacity and low electronic conductivityPhosphate should be developed as High Power Density and Safe Cathode Materials Polyanion compounds(i.e. LiFePO4) with stable framework is one of the excellent candidate as new generation cat
9、hode materials in lithium-ion batteries8Olivine type: LiMPO4 (PO4)3- Orthosilicates: Li2MSiO4 (SiO4)4- The redox potential of Mn+/n+1 can be modulated by the coordinated polyanion group Lower inductive effects of silicate anions compared with phosphate anion, but higher inductive effects than oxide
10、anion is expected.910A novel cathode materials with more than one electron exchange: Li2MnSiO4 Rietveld plot of Li2MnSiO4/C composite.102030405060708090010002000300040005000600070008000900010000intensity2theta (deg) obs cal diffRF=3.14%RWP=4.21%orthorhombicPmn21a = 6.308(3) b = 5.377(7) c = 4.988(9)
11、 Y. X. Li, Z.L.Gong, Y. Yang; J. Power Sources, 174(2), 528-532, 2007 Y.Yang, Y.X.Li, Z.L.Gong; Chinese Patent CN 20501001502002503001.01.52.02.53.03.54.04.55.0 150 mA/g 30 mA/g 5 mA/gVoltage/V vs. Li+/Li Specific Capacity/mAhg-111Li2MnSiO4正極材料循環性能的研正極材料循環性能的研究究0501001502002501.21.41.61.82.02.22.42.
12、62.83.03.23.43.63.84.04.24.44.64.85.0 Votage / VCapacity / mAhg-1 a 1 cycle b 5 cycles c 10 cycles d 20 cycles e 40 cyclesabcdei=30mAg-10102030406080100120140160180200220240 充電放電Capacity/mAhg-1Cycle Numberi=30mAg-1Cyclic stability of Li2MnSiO4 material is poor!12The first charge/discharge profiles o
13、f Li2Mn1-xFexSiO4/C at a current density of 10 mA g-1.* Z.L. Gong, Y.X. Li, Y. Yang, Electrochem. Solid-State Lett. 9 (2006) A542.0501001502002501.01.52.02.53.03.54.04.55.0d cba Voltage/V vs. Li+/LiSpecific capacity/mAh/gea:x=0.9b:x=0.7c:x=0.5d:x=0.2e:x=0 A capacity of 214 mAh/g (86% of the theoreti
14、cal capacity, 1.29 electrons per unit formula) was achieved for Li2MnxFe1-xSiO4 (x = 0.5) sample .Li2Mn1-xFexSiO4/C13 Cyclic performance of improved Li2Mn0.5Fe0.5SiO4 02468101214161820050100150200250300350 Cycle number Charge DischargeCapacity/mAh/gCurrent density:10mA/g (C/16), Temperature:30 oC144
15、00030002000100004550556065707580859095100105110/cm-1 1 cycle 3 cycles 5 cycles10cycles 20 cycles 40 cycles4788709701431870cm-1 SiO44-40003500300025002000150010005000.400.350.300.250.200.150.100.050.00Wavenumbers /cm-1Intensity 73589010301115 abcdefcycle number:a:0, b:1, c:5, d:10, e:20, f:40SiO44-Si
16、O44-SiO32-15Charge 140mAh/gCharge 100mAh/gLi2MnSiO4(yx)ppm500-50-100-150-200Solid MAS 7Li NMR of Li2MnSiO4 at different charged statesFrom ex-situ NMR spectra, it is proposed that the rate of deintercalation of Li+ at different sites are different, and some Li2SiO3 are newly formed16Questions Can we
17、 get better cyclic performance in SiO44- framework with more than one electron for transition metal ions ? What are main factors control the capacity and cyclic stability of the silicates materials? Whats the reaction step and mechanism for mixed system, i.e. Li2Fe1-xMnxSiO4 (0 x1) In-situ or ex-sit
18、u XAS, Solid MAS NMR, Mossbauer 17XRD pattern of Li2Fe0.5MnSiO4SEM images of Li2Fe0.5Mn0.5SiO4Structure and morphology of Li2Fe0.5Mn0.5SiO4/C180501001502002503003501.52.02.53.03.54.04.55.0 1st cycle 2nd cycleVoltage(V)Specific capacity (mAh/g)i = 5 mA/g 0501001502002501.01.52.02.53.03.54.04.55.0 1st
19、 cycle 2nd cycleVoltage(V)Specific capacity (mAh/g)i = 10 mA/g 0501001502001.01.52.02.53.03.54.04.55.0 1st cycle 2nd cycleVoltage(V)Specific capacity (mAh/g)i = 150 mA/g Electrochemical performances of Li2 Fe0.5Mn0.5SiO4The initial two cycles at 5 mA/g between 1.5 and 4.8 V.The initial two cycles at
20、 10 mA/g between 1.5 and 4.8 V.The initial two cycles at 150 mA/g between 1.5 and 4.8 V.1901234567891011050100150200250 5 mA/g 10 mA/g150 mA/g Li2MnSiO4 at 5 mA/gSpecific capacity (mAh/g)Cyclic numberCyclic performances of Li2Fe0.5Mn0.5SiO4 at 5, 10 and 150 mA/g, and Li2MnSiO4 at 5 mA/g200306090 120
21、 150 180 210 240 270 3001.62.02.42.83.23.64.04.44.8jihfgbedcVoltage(V)Specific capacity (mAh/g)ai=20 mA/g, 1.5-4.8 VElectrode Reaction Mechanism Study- In-situ XANESThe first charge-discharge curves of Li2Fe0.5Mn0.5SiO4 during in-situ measurementSSRF Shanghai, China上海同步輻射光源上海同步輻射光源217110712071307140
22、715071600.00.40.81.21.62.0 Li2Mn0.5Fe0.5SiO4 charge 3.8 V charge 4.2 V charge 4.6 V charge 4.8 V FeO Fe2O3 Absorption Coefficient (a.u.) Energy (eV)In-situ Fe K-edge XANES spectra during the first charging process2265406550656065706580659066000.00.51.01.5654065456550655565600.00.30.60.91.21.5 Li2Fe0
23、.5Mn0.5SiO4 charge 3.8 V charge 4.2 V charge 4.6 V charge 4.8 V MnO Mn2O3 Absorption Coefficient (a.u.) Energy (eV) Absorption Coefficient (a.u.) Energy (eV) Li2Fe0.5Mn0.5SiO4 charge 3.8 V charge 4.2 V charge 4.6 V charge 4.8 V MnO Mn2O3In-situ Mn K-edge XANES spectra during the first charging proce
24、ss236545.06545.56546.06546.56547.06547.56548.06548.56549.06549.56550.01.2 1.8 2.4 3.0 3.6 4.2 4.87120.07120.57121.07121.57122.07122.57123.07123.57124.07124.57125.0 Absorption edge (eV) Absorption edge (eV)Step voltage (V) Fe K edgeFeO (7120.37 eV)Fe2O3(7123.08 eV)charge4.8 4.2 3.6 3.0 2.4 1.8 1.2 Mn
25、 K edge discharge MnO (6545.37 eV)Mn2O3(6548.74 eV)Evolution of absorption edge of Fe and Mn of Li2Mn0.5Fe0.5SiO4 in the first charging and discharging processes.24Nano-structured Li2FeSiO4 with excellent rate capabilities and cyclic stability102030405060708090 2 Theta (o)Space group:OrthorhombicPmn
26、21 X-ray diffraction patterns of the carbon coated Li2FeSiO4. Insert: TEM image of the material.Z. L. Gong, Y. X. Li, G. N. He, J. Li, Y. Yang* Electrochem. Solid State Lett., 11, A60-63 (2008). 25Nanostructured characteristic of the Li2FeSiO4 make it as high-rate cathode materials feasible26The inv
27、erse of the magnetic susceptibility with temperature agrees well with paramagnetism for pure sample. The arrow point out the anomalies characteristics of an antiferromagnetic ordering of Li2FeSiO4 below TN = 20 K. The curve agree well with Curie-Weiss law in the whole paramagnetic region.27Electroch
28、emical performance of the Li2FeSiO4 cathodes at different cycles0501001502001.01.52.02.53.03.54.04.55.0 1st 2nd 10th Specific capacity (mAh/g)Voltage (V)1.54.8 V versus Li+/Li; 1/16 CZ. L. Gong, Y. X. Li, G. N. He, J. Li, Y. Yang* Electrochem. Solid State Lett., 11, A60-63 (2008). 2805010015012345C/
29、1610 C 5 C2 C Specific capacity (mAh/g)Voltage (V)C/1610 C5 C2 CExcellent rate-performance of the silicate cathode materialsZ. L. Gong, Y. X. Li, G. N. He, J. Li, Y. Yang* Electrochem. Solid State Lett., 11, A60-63 (2008). Reasons: Porous nanostructure, and improved electronic conductivity through c
30、arbon connection.2901020304050020406080100120140160180200 2 C 5 C10 C Cycle numberDischarge Capacity (mAh/g)Excellent cyclic stability of Li2FeSiO40204060800204060801001201401601802002C10C Cycle numberDischarge Capacity (mAh/g)2C5C30050100 150 200 250 300 350 400 450-10-8-6-4-20246810 ExoDSC/(mW/mg)
31、Temperature/oC uncycle Charge to 4.8 VLi2FeSiO4+ElectrolyteNo extra heat give off during heating process!31 At our synthesis conditions, two modifications of Li2CoSiO4 (, and ) which are derivatives of low temperature Li3PO4 were obtained. a: ; Oorthorhombic and space-group Pmn21. b: orthorhombic Th
32、e XRD profiles of the Li2CoSiO4 powers prepared at different conditions. Co-silicates- Li2CoSiO4 L. Gong, Y. X. Li, Y. Yang; J Power Sources, 2007, 174(2), 524-527, S. Q. Wu, J. H. Zhang, Z. Z. Zhu and Y. Yang, Curr. Appl. Phys. 2007, 7, 61132The temperature dependence of the inverse molar magnetic
33、susceptibility 1/m for Li2CoSiO4 powers prepared at 873 K. The magnetization curves M (H) at 2 K for Li2CoSiO4 powers prepared at 873 K. Magnetic property33Galvanostatic chargedischarge curves for Li2CoSiO4-based cathodes at current rate 16 mA/g. Electrochemical performance34space-group: Pmn21SiO4 -
34、 MO4LiO4SiO4 - MO4Corrugated layerStructure of Li2MSiO4Reference:1)S.Q.Wu, et al; Computational Materials Science, 2009, 44, 1243-1251 O Co - OO Si - O35 A series of silicates cathode materials such as Li2FeSiO4, LiFexMn1-xSiO4, Li2CoSiO4 with and without carbon coating have been synthesized, some of them could achieve more
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/Z 45388.1-2025工業過程測量、控制和自動化第1部分:工業設施和智能電網之間的系統接口
- 天然氣輸配過程中能耗降低技術考核試卷
- 橡膠制品的供應鏈管理與協同創新考核試卷
- 綠色農業與食品安全考核試卷
- 寶石的結晶學與晶體生長研究進展評價考核試卷
- 禮儀用品企業環境管理體系考核試卷
- 遼寧省葫蘆島市六校聯考2025屆普通高中畢業班教學質量監測物理試題含解析
- 昆山杜克大學《學校體育學A》2023-2024學年第一學期期末試卷
- 永州市冷水灘區2025屆三年級數學第二學期期末統考模擬試題含解析
- 山東醫學高等專科學校《數學規劃》2023-2024學年第一學期期末試卷
- 山東省高中名校2025屆高三4月校際聯合檢測大聯考生物試題及答案
- 2025年武漢數學四調試題及答案
- 【MOOC】數學建模精講-西南交通大學 中國大學慕課MOOC答案
- 職業病防護設施與個體防護用品的使用和維護
- 2024年全國高中數學聯賽北京賽區預賽一試試題(解析版)
- 綠化養護服務投標方案(技術標)
- 中國紡織文化智慧樹知到期末考試答案2024年
- (正式版)HGT 6313-2024 化工園區智慧化評價導則
- GB/T 3091-2015低壓流體輸送用焊接鋼管
- 實際控制人股東會決議
- 混凝土攪拌機設計論文
評論
0/150
提交評論