




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、14 點、直線和平面的投影點、直線和平面的投影4.0 4.0 投影法投影法4.1 4.1 點的投影點的投影4.2 4.2 直線的投影直線的投影4.3 4.3 平面的投影平面的投影24.0 4.0 投影法投影法3一一. . 基本概念基本概念投影法:投影法:對影子和物體之間的幾何關系進行科學研究和對影子和物體之間的幾何關系進行科學研究和抽象,形成的在投影平面上表示空間物體的方法,稱為抽象,形成的在投影平面上表示空間物體的方法,稱為投影法。投影法。在研究物體的投影時,把影子投落的平面稱為在研究物體的投影時,把影子投落的平面稱為投影面投影面,把光線或視線稱為把光線或視線稱為投射線投射線。投射線、被投影
2、的物體和投。投射線、被投影的物體和投影面,是形成投影必備的影面,是形成投影必備的3 3個條件,也稱投影三要素。個條件,也稱投影三要素。4PSABCac投影條件及標注:投影條件及標注: 投射線投射線(s) 空間幾何元素空間幾何元素(大寫大寫 A、B、C) 投影面投影面(大寫大寫 P、V、H、W) 投影投影(小寫小寫a、b 、c )sb投影面投影面空間幾何元素空間幾何元素投射線投射線投影投影投射中心投射中心5二二. . 投影的分類投影的分類根據投射線交于一點還是相互平行,可將投影法分為根據投射線交于一點還是相互平行,可將投影法分為中心投影法中心投影法和和平行投影法平行投影法。用上述兩種方法畫出的投
3、影圖分別稱為用上述兩種方法畫出的投影圖分別稱為中心投影圖中心投影圖和和平行投影圖平行投影圖。6 2 2缺點:缺點: 一般情況下,投影不反映物體的真一般情況下,投影不反映物體的真 實大小,度量性不好,無等比性,無平行性。實大小,度量性不好,無等比性,無平行性。DEdePSABCacsb 1 1優點優點 :實體感強、逼真;:實體感強、逼真;中心投影法中心投影法7deacbSs若將投射中心若將投射中心“S”向左移至無窮遠處向左移至無窮遠處s平行投影法平行投影法優點:具有平行性、等比性、實形性優點:具有平行性、等比性、實形性(當空間的面、線與投影面平行時)。(當空間的面、線與投影面平行時)。缺點:立體
4、感差。缺點:立體感差。abcde 空間空間ABDE,ABDE,投影投影abdeabde AD/DC = ad/dcAD/DC = ad/dcPDEABC8按投射線與投影面的傾角不同,平行投影可分為按投射線與投影面的傾角不同,平行投影可分為:斜投影斜投影(斜角投影)(斜角投影)投射線投射線不垂直于不垂直于投影面投影面正投影正投影(直角投影)(直角投影)投射線投射線垂直于垂直于投影面投影面工程中常用的投影圖:工程中常用的投影圖:正投影圖正投影圖機械工程中應用最廣泛的一種投影圖。機械工程中應用最廣泛的一種投影圖。軸測投影圖軸測投影圖是按平行投影法繪制的。優點是立體感強,是按平行投影法繪制的。優點是立
5、體感強,易于看懂;缺點是度量性不夠理想,作圖較麻煩。易于看懂;缺點是度量性不夠理想,作圖較麻煩。透視投影圖透視投影圖是按中心投影法繪制的。畫圖時,常使畫面是按中心投影法繪制的。畫圖時,常使畫面位于物體和觀察者之間,觀察者通過畫面位于物體和觀察者之間,觀察者通過畫面“視視”物體而畫物體而畫出圖形。優點是形象逼真,缺點是度量性差,作圖復雜。出圖形。優點是形象逼真,缺點是度量性差,作圖復雜。94.1 4.1 點的投影點的投影101.1.點在一個投影面的投影點在一個投影面的投影 A aAaA1A2 反過來,就無法實現反過來,就無法實現 a A !P因此,因此,工程上一般工程上一般需采用多個相互正交的投
6、影面組成投影需采用多個相互正交的投影面組成投影面體系,用多個投影來表示空間幾何元素的位置和形狀。面體系,用多個投影來表示空間幾何元素的位置和形狀。一點的投影圖一點的投影圖112.2.點的兩面投影點的兩面投影V H X O A aaax 水平投影面水平投影面正立投影正立投影面面空間空間“點點”正面投影正面投影投影軸投影軸水平投影水平投影H H繞繞OXOX旋轉旋轉由由V V面和面和H H面組成的投影體系稱為面組成的投影體系稱為兩投影面體系兩投影面體系。第一分角第一分角將物體置于第一分角內,使其處于觀察者和投影將物體置于第一分角內,使其處于觀察者和投影面之間而得到的正投影,稱為面之間而得到的正投影,
7、稱為第一角投影第一角投影。12A點的正投影圖點的正投影圖V H X O aaax X O aaax 簡化簡化 aax = Aa ( (點點A與與H的距離的距離) ) aax = Aa ( (點點A與與V的距離的距離) ) aa OX投影特性:投影特性:13V H X O A aaax H H繞繞OXOX旋轉旋轉點在兩投影面體系中的投影規律:點在兩投影面體系中的投影規律:X O aaax B bbbbccddG 14點在兩投影面體系中的投影規律:點在兩投影面體系中的投影規律:1 1、點的正面投影在、點的正面投影在OX軸上方(或下方)時,表示空間軸上方(或下方)時,表示空間該點在該點在H面的上方(
8、或下方);面的上方(或下方);2 2、點的水平投影在、點的水平投影在OX軸下方(或上方)時,表示空軸下方(或上方)時,表示空間該點在間該點在V面的前方(或后方);面的前方(或后方);3 3、當點位于投影面內時,、當點位于投影面內時, (1)點的一個投影落在點的一個投影落在OX軸上;軸上; (2)點的另一個投影與其本身重合。點的另一個投影與其本身重合。153.3.點的三面投影點的三面投影V H X Z Y W O A a”aaax aY az .水平投影面水平投影面正立投影正立投影面面側立投影面側立投影面OZOZ軸軸OYOY軸軸空間空間“點點”側面投影側面投影正面投影正面投影OXOX軸軸水平投影
9、水平投影H H繞繞OXOX旋轉旋轉W W繞繞OZOZ旋轉旋轉直觀圖展平方式直觀圖展平方式直觀圖直觀圖16V H W X Z O a”aaax aY az YH YW 最后擦去邊框,最后擦去邊框,得到三面投影圖。得到三面投影圖。直觀圖展平直觀圖展平 V V面與畫面重合面與畫面重合 H H面繞面繞OXOX軸向下軸向下旋轉旋轉9090 W W面繞面繞OZOZ軸向右軸向右旋轉旋轉9090aYWH17 設空間點設空間點A的坐標為的坐標為 A(x,y,z),則,則 aax = aaYW = Aa = z 坐標坐標 (點點A與與H的距離的距離) aax = aaz = Aa = y 坐標坐標 (點點A與與V
10、的距離的距離) aaYH =aaz = Aa” = x 坐坐標標 (點點A與與W的距離的距離) aax=a”az aa OX,aa” OZ X Z O a”aaax aYW az YH YW aYH 點在三投影面體系中的投影規律:點在三投影面體系中的投影規律:184.4.點的二求三點的二求三a”O X Z aa YH YW a”azax已知點的兩個投影,利用點的三面投影規律求其第三個投影。已知點的兩個投影,利用點的三面投影規律求其第三個投影。 195.5.根據點的空間坐標做其投影圖根據點的空間坐標做其投影圖a O X Z YH YW azax已知空間點已知空間點A A的坐標為的坐標為(50(5
11、0,3030,40)40),求其三面投影圖。,求其三面投影圖。 503040aa”a”20二兩點間的相對位置二兩點間的相對位置X X、Y Y、Z Z值大者值大者: : 為左、前、上方為左、前、上方aa X O Z YH YWa”bbb”x xy yz z點點B B在點在點A A的左、的左、前、下方。前、下方。21aa X O Z YH YWa”axazaYH aYW例:例:已知點已知點 A (12,8,10),點點 B在點在點 A 的下方的下方 5 mm、左左 0 mm、前、前 0 mm,試完,試完成點成點 B 的投影。的投影。bb b”5 分析:分析: 點點 B在點在點 A 的正下方的正下方
12、 5 mm, 即點即點 B(12,8,5)。)。22三重影點及可見性三重影點及可見性 b aa X O Z YH YWa”axazaYHaYWbb”可見性可見性 在投影圖中,對在投影圖中,對H H面的重影點,上者為可見點;面的重影點,上者為可見點; 對對V V面的重影點,前者為可見點;面的重影點,前者為可見點; 對對W W面的重影點,左者為可見點。面的重影點,左者為可見點。表示方法表示方法 不可見點的投影加圓括號表示。不可見點的投影加圓括號表示。當空間兩點處在對某投影面的當空間兩點處在對某投影面的同一條投影線上時,它們在該同一條投影線上時,它們在該投影面上的投影重合,這兩點投影面上的投影重合,
13、這兩點稱為對該投影面的稱為對該投影面的重影點重影點。點點A A、B B為為H H面的重影點。面的重影點。(b)234.2 4.2 直線的投影直線的投影24ABP CDP P E F 一直線在單一投影面上的投影一直線在單一投影面上的投影ab 直線直線垂直于垂直于投影面:直線在該投影面上的投影積聚為點投影面:直線在該投影面上的投影積聚為點cdef 直線直線平行于平行于投影面:直線在該投影面上的投影反映實長投影面:直線在該投影面上的投影反映實長 直線直線傾斜于傾斜于投影面:直線在該投影面上的投影縮短投影面:直線在該投影面上的投影縮短25二直線在三投影面體系中的投影二直線在三投影面體系中的投影相對于投
14、影面名稱相對于投影面名稱H HV VW W規定夾角的名稱規定夾角的名稱 直線與投影面夾角的規定名稱直線與投影面夾角的規定名稱直線在三投影面體系中的相對位置:直線在三投影面體系中的相對位置: 投影面垂直線投影面垂直線 投影面平行線投影面平行線 一般位置直線一般位置直線26 1 1投影面垂直線的投影投影面垂直線的投影ABP ab 在三投影面體系中,當直線垂直于某一個投影面時,則必在三投影面體系中,當直線垂直于某一個投影面時,則必同時平行于另兩個投影面,這樣的直線稱為同時平行于另兩個投影面,這樣的直線稱為投影面垂直線投影面垂直線。 共有三種投影面垂直線:共有三種投影面垂直線:直線直線投影面投影面 V
15、 V:正垂線:正垂線直線直線投影面投影面 H H:鉛垂線:鉛垂線直線直線投影面投影面 W W:側垂線:側垂線27以正垂線以正垂線 AB AB 為例,討論其投影特性:為例,討論其投影特性:WV HABababb” a” a b ab a”b” AB V, ABH,ABW。 a b ab = =a”b” = =AB = = LAB abOX, , a”b”OZ = = 90、 = = = = 0X O YWZ YH28WV HABabab a”b”X O YWZ YH鉛鉛垂線垂線:ABabab X O YWZ YHab側側垂線垂線:投影特性:投影特性:投影面垂直線在所垂直投影面垂直線在所垂直的投影
16、面上的投影積聚的投影面上的投影積聚為一點;另外兩個投影為一點;另外兩個投影反映實長,且垂直于相反映實長,且垂直于相應的軸。應的軸。292 2投影面平行線的投影投影面平行線的投影在三投影面體系中,當直線平行于某一個投影面,同時與在三投影面體系中,當直線平行于某一個投影面,同時與另兩個投影面傾斜,這樣的直線稱為另兩個投影面傾斜,這樣的直線稱為投影面平行線投影面平行線。CDP cd共有三種投影面平行線:共有三種投影面平行線:直線直線投影面投影面 V V:正平線:正平線直線直線投影面投影面 H H:水平線:水平線直線直線投影面投影面 W W:側平線:側平線30以水平線以水平線 CD CD 為例,討論其
17、投影特性:為例,討論其投影特性:WV HXOYWZYH CDdcdd” c” d cdc”d”CD H,與,與 V、W 傾斜。傾斜。 cd = CD = LCD cdOX , c”d ”OYW cd CD , c”d ” CD = 0, 0 、 90 cc 投影特性:投影特性:投影面平行線在所平行的投影面上的投影反映實長、反映與另外兩投影面平行線在所平行的投影面上的投影反映實長、反映與另外兩個投影面的夾角實際大小;另兩個投影平行于相應的軸,且縮短。個投影面的夾角實際大小;另兩個投影平行于相應的軸,且縮短。31WV HCDXOYWZYH d cdc”d”c 正平正平線線:側平側平線線:CDXOY
18、WZYH d cdc”d”c 323 3一般位置直線的投影一般位置直線的投影直線與三個投影面都傾斜,這樣的直線稱為一般位置直線。直線與三個投影面都傾斜,這樣的直線稱為一般位置直線。P E F ef33以一般位置直以一般位置直線線 HG HG 為例,討論其投影特性:為例,討論其投影特性:投影特投影特性:性:三個投影均與軸傾斜、投影縮短,與三個投影面的夾角三個投影均與軸傾斜、投影縮短,與三個投影面的夾角都不反映實際大小。都不反映實際大小。 ? ? ?WV HG H h h h” g” g gh ghg”h”gXOYWZYH 34三線段的實長及其與投影面的夾角三線段的實長及其與投影面的夾角WV HG
19、 H h h h” g” g gGV GW .YGH XGH ZGH .GH h h g gO X.ghYGH LGH 例:例:求線段求線段HGHG的實長及的實長及其與投影面其與投影面V V的夾角。的夾角。求線段求線段HGHG的實長可利用的實長可利用GHGGHGH H、GHGGHGV V、GHGGHGW W 任一個直角三角形;而夾角任一個直角三角形;而夾角 、 、 則分別在不同的三角形中則分別在不同的三角形中。YGH 35四屬于直線的點四屬于直線的點屬于直線的點,其投影必在該直線的屬于直線的點,其投影必在該直線的同名投影同名投影上,且將該直上,且將該直線的各投影分割成和空間相同的比例。(用圖解
20、法)線的各投影分割成和空間相同的比例。(用圖解法)X O YWZ YH X O a”b”c”對于側平線,有兩種判斷方法:對于側平線,有兩種判斷方法:利用側投影;利用比例法。利用側投影;利用比例法。abab llaabbcck k36五空間兩直線的相對位置五空間兩直線的相對位置若空間兩直線平行,則它們的同名投影必然平行。反之,若空間兩直線平行,則它們的同名投影必然平行。反之,如果兩直線的各個同名投影相互平行,則這兩直線在空間如果兩直線的各個同名投影相互平行,則這兩直線在空間也一定平行。也一定平行。1、兩直線平行、兩直線平行ABCDabcddcab37hZ YH YW gefggXOehfefh注
21、意:注意:若空間兩直線若空間兩直線是一般位置直線,只是一般位置直線,只要其任意兩對同名投要其任意兩對同名投影相互平行,就能判影相互平行,就能判定這兩條直線在空間定這兩條直線在空間相互平行。但如果是相互平行。但如果是投影面平行線,則需投影面平行線,則需要做出第三個投影。要做出第三個投影。直線直線EF和和GH不平行不平行382、兩直線相交、兩直線相交若空間兩直線相交,則它們的同名投影也一定相交,并且若空間兩直線相交,則它們的同名投影也一定相交,并且交點符合空間一點的投影規律。交點符合空間一點的投影規律。abcdabcdkkBCKabkcdabcdkDA393、兩直線交叉、兩直線交叉雖然兩交叉直線在
22、空間沒有交點,但它們的同名投影卻可雖然兩交叉直線在空間沒有交點,但它們的同名投影卻可能相交,但各個投影的交點不符合空間一點的投影規律。能相交,但各個投影的交點不符合空間一點的投影規律。abcdabcd12124(3)431(2)43BCabcdabcdDA40六直線的跡點六直線的跡點直線(或其延長線)與投影面的交點,稱為該直線的直線(或其延長線)與投影面的交點,稱為該直線的跡點跡點。跡點既在直線上(或延長線上),又在投影面上。跡點既在直線上(或延長線上),又在投影面上。X O 因為跡點是投影面上的點,因為跡點是投影面上的點,所以,跡點的一個投影必所以,跡點的一個投影必在投影軸上!在投影軸上!m
23、m Mnn Naba b 規定:規定: 直線與直線與 H H 面的交點面的交點水平跡點(水平跡點(M M) 直線與直線與 V V 面的交點面的交點正面跡點(正面跡點(N N) 直線與直線與 W W 面的交點面的交點側面跡點(側面跡點(S S)414.3 4.3 平面的投影平面的投影42一一. . 平面的表示方法平面的表示方法P ABCXOabcabcP ABCXOabcabcP ABCDddXOabcabcP ABCDddXOabcabcP ABCaXObcabc線及線外一點線及線外一點兩平行線兩平行線兩相交直線兩相交直線任意平面圖形任意平面圖形不共線的三點不共線的三點1.幾何元素表示幾何元素
24、表示432.2.跡線表示跡線表示 XZYHYW OPVPZPXPHPYHPYWPWWV HPPVPHPWPXPYPZ跡線:平面與投影面的交線。跡線:平面與投影面的交線。規定:正面、水平、側面跡線分別用規定:正面、水平、側面跡線分別用P PV V、P PH H、P PW W表示。表示。44WV HQVQHQWQQXQYQVQYHQYW XZYHYW OQXQHQW2.2.跡線表示跡線表示45 XZ YH YWOWV HRRHRWRHRYH RWRY2.2.跡線表示跡線表示46只強調形狀、大小,不考慮其相對于投影面的位置。只強調形狀、大小,不考慮其相對于投影面的位置。作圖時,利用幾何元素之間的相互
25、位置關系。作圖時,利用幾何元素之間的相互位置關系。3.3.無軸投影無軸投影aabba”b”c”cc注意:注意: 幾何元素間的幾何元素間的方位關系方位關系 幾何元素間的幾何元素間的度量關系度量關系例:例: 完成完成ABCABC的側面投影。的側面投影。47二二. . 平面的投影特性平面的投影特性 平面平面垂直于垂直于投影面:投影面: 平面在該投影面上的投影積聚為直線;平面在該投影面上的投影積聚為直線; 平面平面平行于平行于投影面:投影面:平面在該投影面上的投影反映實形;平面在該投影面上的投影反映實形; 平面平面傾斜于傾斜于投影面:投影面:平面在該投影面上的投影為類似形。平面在該投影面上的投影為類似
26、形。1.1.平面在單一投影面上的投影特性平面在單一投影面上的投影特性482.2.平面在三投影面體系中的投影特性平面在三投影面體系中的投影特性正平面的投影特性:正平面的投影特性: 平行于平行于V V:在:在V V上投影反映實形;上投影反映實形; 垂直于垂直于H H、W W:在:在H H、W W上投影積聚成直線,且平行于投影軸。上投影積聚成直線,且平行于投影軸。 XZYH YW Oabcabca”b”c”例:例:( (以正平面為例以正平面為例) ) 平面平行于平面平行于V V正平面正平面 平面平行于平面平行于H H水平面水平面 平面平行于平面平行于W W側平面側平面投影面平行面的投影投影面平行面的
27、投影 平行于某一個投影面的平面平行于某一個投影面的平面 投影面平行面。投影面平行面。49投影面垂直面的投影投影面垂直面的投影垂直于某一個投影面、與另兩個投影面傾斜的平面垂直于某一個投影面、與另兩個投影面傾斜的平面 投影面垂直面:投影面垂直面: XZYH YWOabcabca”b”c”鉛垂面的投影特性:鉛垂面的投影特性: 垂直于垂直于H H :在:在H H上投影積聚成直線,且與投影軸傾斜;上投影積聚成直線,且與投影軸傾斜; 傾斜于傾斜于V V、W W:在:在 V V 、W W上投影類似于空間的面。上投影類似于空間的面。例例:(:(以鉛垂面為例以鉛垂面為例) ) 平面垂直于平面垂直于V V正垂面正
28、垂面 平面垂直于平面垂直于H H鉛垂面鉛垂面 平面垂直于平面垂直于W W側垂面側垂面50一般位置平面的投影一般位置平面的投影 與三個投影面均傾斜的平面與三個投影面均傾斜的平面 一般位置平面。一般位置平面。 XZYH YWOaabba”b”c”cc一般位置面的投影特性:一般位置面的投影特性: 與三個投影面均傾斜,所以三個投影都具類似性。與三個投影面均傾斜,所以三個投影都具類似性。例:例: 完成完成ABCABC的側面投影。的側面投影。51直線直線DIDI在面上!在面上!d1d1ff距距H H面面2020df=10 DFDF為所求為所求 20XOacbabc定理定理:若直線通過平面上的兩個點,則直線必在該平面上。:若直線通過平面上的兩個點,則直線必在該平面上。例:例: 在已知面上作在已知面上作一水平線,距一水平線,距H H面面2020,長度,長度1010。20201010二二. . 屬于平面的直線和點屬于平面的直線和點1.1.屬于平面的直線屬于平面的直線52
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創新創業基礎教程 課件 模塊七 網絡創業實踐
- 車輛股份買賣的正式合同樣本
- 天津市武清區名校2025屆初三一輪階段測評(三)語文試題試卷含解析
- 扎蘭屯職業學院《方法學》2023-2024學年第二學期期末試卷
- 江西工業工程職業技術學院《植保研究前沿(一)》2023-2024學年第二學期期末試卷
- 上海交通職業技術學院《數據庫原理綜合實踐》2023-2024學年第二學期期末試卷
- 美容美發場地租賃合同模板
- 四川電影電視學院《通信原理及應用》2023-2024學年第二學期期末試卷
- 江蘇省南通市崇川校2025屆初三下學期期末質量抽測生物試題試卷含解析
- 玉林師范學院《現代漢語1》2023-2024學年第二學期期末試卷
- 智能輸液架的設計與實現
- 2024年福建省中考歷史試卷(含標準答案及解析)
- 人教版四年級下冊音樂《唱山歌》教學設計
- 2024年4月貴州省自考00995商法(二)試題及答案含評分參考
- 高等工程數學Ⅲ智慧樹知到期末考試答案章節答案2024年南京理工大學
- 2024年美國商用車和乘用車市場現狀及上下游分析報告
- DB32T3748-2020 35kV及以下客戶端變電所建設標準
- 中國近代三種建國方案
- 數學奧秘揭秘-揭開數學背后的奧秘
- 《幽門螺桿菌檢測》課件
- 《云南土壤類型》課件
評論
0/150
提交評論