




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、二、第二類換元法二、第二類換元法一、第一類換元法一、第一類換元法例例2. 求.d22xax想到公式21duuCu arctan例例3. 求).0(d22axax21duu想到Cu arcsin例例4. 求.dtanxx解解:xxxdcossinxxcoscosdCx cosln?dcotxxxxxsindcosCx sinlnxxsinsindxxdtan類似Caxaxaln21例例5. 求.d22axx解解:221ax )(axax)()(axaxa21)11(21axaxa 原式原式 常用的幾種配元形式常用的幾種配元形式: 1)()df axbx()f axb)(dbxa a112)()d
2、nnf xxx)(nxfnxdn113)()dnf xxx)(nxfnxdn1nx1萬能湊冪法4)(sin )cos dfxx x )(sin xfxsind5)(cos )sin dfxx x )(cos xfxcosdxxxfdsec)(tan)62)(tan xfxtandxfxxde )(e)7)(exfxedxxxfd1)(ln)8)(lnxfxlnd例例9. 求.e1dxx解法解法1xxe1dxxxxde1e)e1 (xdxxe1)e1 (dxCx)e1ln(解法解法2 xxe1dxxxde1exxe1)e1 (dCx)e1ln()1(elne)e1ln(xxx兩法結果一樣兩法結果
3、一樣xxxsindsin11sin1121例例10. 求.dsecxx解法解法1 xxdsecxxxdcoscos2xx2sin1sindxsin1ln21Cxsin1lnCxxsin1sin1ln21)2cos2cos21 (241xx 例例12 . 求.dcos4xx解解:224)(coscosxx 2)22cos1(x)2cos21 (24cos141xx)4cos2cos2(212341xxxxdcos4xxxd)4cos2cos2(21234141xd23)2d(2cosxx)4(d4cos81xxx83x2sin41x4sin321C例例13. 求.d3cossin22xxx解解:
4、xx3cossin22221)2sin4(sinxx 思考與練習思考與練習1. 下列各題求積方法有何不同? xx4d) 1 (24d)2(xxxxxd4)3(2xxxd4)4(2224d)5(xx24d)6(xxxxx4)4(d22221)(1)d(xx22214)4(dxxxxd441241xx2121xd2)2(4x)2(dx二、第二類換元法二、第二類換元法第一類換元法解決的問題難求易求xxxfd)()(uufd)()(xu若所求積分xxxfd)()(易求,則得第二類換元積分法 .難求,uufd)(例例16. 求. )0(d22axxa解解: 令, ),(,sin22ttax則taaxa2
5、2222sintacosttaxdcosd ax22xa t例例17. 求. )0(d22aaxx解解: 令, ),(,tan22ttax則22222tanataaxtasecttaxdsecd2ax22ax t例例18. 求. )0(d22aaxx解解:,時當ax 令, ),0(,sec2ttax則22222secataaxtatanxdtttadtansecax22ax t例例19. 求.d422xxxa解解: 令,1tx 則txtdd21小結小結:1. 第二類換元法常見類型第二類換元法常見類型: ,d),() 1xbaxxfn令nbxat,d),()2xxfndxcbxa令ndxcbxa
6、t,d),()322xxaxf令taxsin或taxcos,d),()422xxaxf令taxtan,d),()522xaxxf令taxsec7) 分母中因子次數較高時, 可試用倒代換倒代換 ,d)()6xafx令xat 由導數公式vuvuuv )(積分得:xvuxvuuvdd分部積分公式分部積分公式xvuuvxvudd或uvvuvudd1) v 容易求得 ;xvuxvudd)2比容易計算 .:)d(的原則或及選取vvu分部積分法例例4. 求.dsinexxx解解: 令,sinxu xve, 則,cos xu xve 原式xxsinexxxdcose再令,cos xu xve, 則xve解題技巧解題技巧:的一般方法及選取vu把被積函數視為兩個函數之積 , 按 “ 反對冪指三反對冪指三” 的順序, 前者為 后者為u.v反: 反三角函數對: 對數函數冪: 冪函數指: 指數函數三: 三角函數例例7. 求.dexx解解: 令, tx則,2tx ttxd2d 原式tttde2tte2Cxx)1(e2, tu tve)etC令tte(2ttde例例9. 求.)(d22nnaxxI解解: 令,)(122naxu, 1 v則,)(2122naxx
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 火鍋店創業全攻略
- 生鮮店陳列管理教程
- 鐵嶺師范高等專科學校《數字剪輯創作》2023-2024學年第二學期期末試卷
- 蘇州健雄職業技術學院《人力資源管理綜合實訓》2023-2024學年第二學期期末試卷
- 2025至2031年中國流化造粒包衣干燥機行業投資前景及策略咨詢研究報告
- 永州職業技術學院《數據庫課程設計實踐》2023-2024學年第二學期期末試卷
- 漳州理工職業學院《現代數控機床及控制技術》2023-2024學年第二學期期末試卷
- 寧夏體育職業學院《人文經典閱讀實踐(四)》2023-2024學年第二學期期末試卷
- 新型破碎路面施工方案
- 遼寧大學《編排設計》2023-2024學年第二學期期末試卷
- 2025年國家糧食和物資儲備局垂直管理系事業單位招聘筆試參考題庫附帶答案詳解
- 《住院患者身體約束的護理》團體標準解讀課件
- 2023-2024學年天津市部分區八年級(下)期中數學試卷(含解析)
- 醫院侵害未成年人案件強制報告制度培訓課件
- 自卸車整車裝配檢驗規范-ok
- 科技企業孵化器運營方案
- 火力發電廠電氣主接線課程設計
- 吸入裝置正確使用方法調查表
- 三角廣告牌拆卸方案
- 大皂角(中藥飲片炮制規范文檔 性狀 鑒別 用法用量功能與主治 )
- FX挑戰題梯形圖實例
評論
0/150
提交評論