




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、1.請指出彈簧的串、并聯組合方式的計算方法。確定彈性元件的組合方式是串聯還是并聯的方法是什么?對兩種組合方式分別加以說明。答:n個剛度為的彈簧串聯,等效剛度;n個剛度為的彈簧并聯的等效剛度為;并聯彈簧的剛度較各組成彈簧“硬”,串聯彈簧較其任何一個組成彈“簧軟”。確定彈性元件是串聯還是并聯的方法:若彈性元件是共位移端部位移相等,則為并聯關系;若彈性元件是共力受力相等,則為串聯關系。2.非粘性阻尼包括哪幾種?它們的計算公式分別是什么?答:非粘性阻尼包括:(1)庫侖阻尼計算公式,其中,sgn為符號函數,這里定義為,須注意,當時,庫侖阻尼力是不定的,它取決于合外力的大小,而方向與之相反;(2)流體阻尼
2、計算公式:是當物體以較大速度在粘性較小的流體(如空氣、液體)中運動是,由流體介質所產生的阻尼,計算公式為;(3)結構阻尼:由材料內部摩擦所產生的阻尼,計算公式為3.單自由度無阻尼系統的自由振動的運動微分方程是什么?其自然頻率、振幅、初相角的計算公式分別是什么?答:單自由度無阻尼系統的自由振動的運動微分方程;自然頻率:;振幅:;初相角:。4.對于單自由度無阻尼系統自由振動,確定自然頻率的方法有哪幾種?具體過程是什么?答:單自由度無阻尼系統自由振動,確定自然頻率的方法:(1)靜變形法:該方法不需要到處系統的運動微分方程,只需根據靜變形的關系就可以確定出固有頻率具體如下:,又,將這兩個式子聯立即可求
3、得;(2)能量法,該方法又可以分為三種思路來求自然頻率。A:用能量法確定運動微分方程,然后根據運動微分方程來求自然頻率。無阻尼系統滿足能量守恒定律,因此有,對該式進行求導可得根據此式即可導出運動微分方程,其中T為質的動能,V為彈簧的勢能。B:用能量法直接確定固有頻率:其原理是依據系統在任意時刻的能量和(勢能,動能和)相等,因此取兩個特殊時刻靜平衡位置(動能達到最大值)和最大位移處(勢能達到最大),可得=該方法不用導出系統運動微分方程,因此對于復雜系統非常有效。C:用能量法計算彈簧的等效質量,該方法利用彈簧的分布質量對系統振動頻率的影響加以估計,從而得出較準確的頻率值。其中為彈簧的質量。5.對于
4、單自由度有阻尼系統自由振動,其運動微分方程是什么?對無阻尼、小阻尼、過阻尼、臨界阻尼的情況分別加以介紹。對于小阻尼情況,其阻尼自然頻率、振幅、初相角的計算公式是什么?答:單自由度有阻尼系統自由振動,其運動微分方程是或。無阻尼: ,此時運動微分方程的特征方程的特征根為虛數,此時系統運動微分方程的解為:其中,X、由初始條件確定此時特征根在復平面虛軸上,且處于原點對稱的位置,此時,為等幅振動。小阻尼:(),此時運動微分方程的解為:,其中為有阻尼自然,系統的特征根為共軛復數,具有負實部,分別位于復平面左半面與實軸對稱的位置上;有阻尼系統的自由振動是一種減幅振動,其振幅按指數規律衰減,阻尼率越大,振幅衰
5、減的越快;特征根的虛部的取值決定了自由振動的頻率,阻尼系統的自然頻率完全有系統本身的特性決定。初始條件與只影響有阻尼自由振動的初始幅值與初相角。過阻尼:(),式中,、為由初始條件確定的常數,特征根為負實數,位于復平面的實軸上這時系統不產生振動很快就趨近平衡位置。臨界阻尼(),此時系統微分方程的解為:臨界阻尼,臨界阻尼率。6.對數衰減率的定義是什么?如何運用對數衰減率計算阻尼率?答:對數衰減率。其中、為間隔j個周期T的振動位移的兩個峰值,利用測得的峰值按公式可以求得,然后利用公式,當阻尼率很小時,與4相比可以略去,故的近似計算公式為。7.對于諧波激勵下單自由度線性系統的強迫振動,其振幅和相位差的
6、計算公式是什么?放大系數的定義是什么?幅頻特性的定義是什么?幅頻特性曲線的特性有哪些?幅頻特性的極大值點和極大值是什么?答:諧波激勵下單自由度線性系統的強迫振動:振幅,相位差:。放大系數的定義:振幅X與激勵的幅值A成比例,即,是無量綱的, ,表示動態振動的振幅X較靜態位移A放大的倍數,稱為放大系數。幅頻特性:與振幅之間僅差一個常數A,因此,描述了振幅與激勵頻率之間的函數關系,故又稱為系統的幅頻特性。幅頻特性曲線的特性:(1) 當時,=1,表明所有曲線從=1開始。當激勵頻率很低,即時,接近于1,說明低頻激勵時的振動幅值接近于靜態位移。這時的動態效應很小,強迫振動這一動態過程可以近似地用靜變形過程
7、來描述,的這一頻率范圍又被稱為“準靜態區”或“剛度區”。在這一區域內,振動系統的特性主要是彈性元件的作用結果。(2) 當激勵頻率很高時,1,且時, ,說明在高頻率激勵下,由于慣性的影響,系統來不及對高頻做出響應,因而振幅很小。因此,稱為“慣性區”,這一區域內,振動系統的特性主要是質量元件作用的結果。(3) 在激勵頻率與固有頻率相近的范圍內,曲線出現峰值,說明此時動態效應很大,振動幅值高出靜態位移許多倍,當阻尼率較大時,峰值較低,反之的峰值較高。因此,這一頻率范圍又被稱為“阻尼區”這一區域內振動系統的特性主要是阻尼元件作用的結果,在此區域中,增大系統的阻尼對振動有很強的抑制效果。(4) 共振不發
8、生在處,而是發生在略低于處,的峰值點隨的增大而向低頻方向移動。當阻尼系數0.707時,系統不會出現共振,且動態位移比靜態位移小。(5) 當=0時,共振頻率等于自然頻率此時即振幅無窮大,這種情況下,共振振幅將隨時間按線性關系增長。復頻特性的極大值點:,極大值:。8.品質因數、半功率點、半功率帶寬的定義是什么?如何運用半功率帶寬計算系統的阻尼率?答:品質因數:;復頻特性曲線中,在峰值兩邊,等于的頻率,、稱為半功率點,與之間的頻率范圍稱為半功率帶寬。運用半功率帶寬計算系統的阻尼率:利用等于構建等式,結合半功率點,半功率帶寬的性質,化簡后可得 。通過激振實驗得到曲線,然后找出共振頻率和半功率帶寬帶入上
9、式即可求出阻尼率。9.對于諧波激勵下單自由度線性系統的強迫振動,相頻特性的特點是什么?Nyquist圖的特點是什么?答:相頻特性的特點:(1)當=0時,即所有曲線從開始。當激勵頻率很低時,取值很小,接近于0,說明低頻激勵時振動位移與激勵之間幾乎是同相;(2)當時,即與的相位相反;(3)當時,這正是“阻尼區的特點。Nyquist圖的特點:(1)的變化范圍為,所以單自由度系統的Nyquist圖位于復平面的下半平面;(2)隨著阻尼率的增大,Nyquist曲線的“環”變小;(3)在共振區域附近,取值很大,變化劇烈,故在Nyquist圖上,共振區域的描述更加清楚,而非共振區域則“縮”得很小,顯然,這對于
10、分析研究共振區域附近的特性是方便的。10.對于諧波激勵下單自由度線性系統的強迫振動,庫侖阻尼、流體阻尼、結構阻尼的等效阻尼系數的計算公式是什么?答:諧波激勵下單自由度線性系統的強迫振動庫倫阻尼:;流體阻尼:;結構阻尼:。11.如何運用Fourier級數分析法對周期激勵下的強迫振動響應進行分析?其幅頻響應、放大系數和相位差分別是什么?答:運用Fourier級數分析法對周期激勵下的強迫振動響應進行分析的方法:將周期激勵分解為基波及其高次諧波的組合,再將對這些諧波的響應進行疊加這就是Fourier級數分析法。基本步驟:將周期激勵函數展開為Fourier級數,然后根據疊加原理對基波和高次諧波的響應進行
11、疊加: 復頻響應:;放大系數: ;相位差:;式中,是單自由度系統的自然頻率。12.如何運用脈沖響應函數法對非周期激勵下的強迫振動響應進行分析?運用該方法,當系統還受到初始激勵的作用時,單自由度系統的全部響應是什么?脈沖響應函數法與Fourier變換法之間的關系是什么?答:(1)運用脈沖響應函數法對非周期激勵下的強迫振動響應進行分析:基本思路是將激勵分解為一系列強度為的脈沖,先求得系統對每一脈沖單獨激勵的響應,再根據疊加原理對這一系列脈沖響應進行疊加。從而得到系統對整個激勵的響應。(2)當系統還受到初始激勵的作用時,單自由度系統的全部響應是: (3)兩種方法的關系:脈沖響應函數法與Fourier
12、變換法是解決同一問題(非周期激勵下的強迫振動)的兩種不同的方法,從物理意義上看,器根本不同在于對于非周期函數f(t)進行分解的方式不同:Fourie變換法是將f(t)分解為一系列的諧波,而脈沖響應函數法則是將f(t)分解為一系列脈沖,不過這兩種方法的基礎都是疊加原理。從數學處理方法上看Fourier,變換法是求得f(t)的Fourier變換,再在頻域中由復頻響應函數與的成績而求得響應的頻譜函數,最后再求的Fourier逆變換而得到響應。脈沖響應函數法則是直接在時間域中求激勵函數f(t)與系統的單位脈沖響應函數的卷積而得到。13.沖擊的定義是什么?沖擊的特點是什么?系統對半正弦脈沖沖擊的響應分為
13、幾個階段?每個階段響應的表達式是什么?每個階段的響應的最大峰值是什么?答:系統受到瞬態激勵,器位移、速度、加速度突然發生變化的現象,稱為沖擊。沖擊的特點是:沖擊作用時,系統之間傳遞動能的時間遠較系統振動的周期短。系統對正弦脈沖沖擊響應分為兩個階段:載荷作用階段和載荷拆除后的自由振動階段。(1)載荷作用階段的響應表達式為:,最大峰值為:(2)載荷拆除后的響應表達式:,最大峰值:。14.對于兩自由度無阻尼系統的自由振動,頻率方程是什么?兩個自然頻率是什么?在每個自然頻率下的振幅比是什么?固有振型的定義是什么?自然模態的定義是什么?兩個同步解的具體形式是什么?響應通解的表達式是什么?答:兩自由度無阻
14、尼系統的自由振動頻率方程:,兩個自然頻率即是頻率方程的兩個根,:。在兩自然頻率下的振幅:不能完全確定振幅,只能確定它們的比值:,;固有振型定義:當系統已頻率或做同步簡諧運動時,具有確定比值的一對常數、或、可以確定系統的振動形態,稱之為固有振型,可用向量形式表示為:,該式中,稱為系統的模態向量,每一個模態向量和相應的自然頻率構成系統的一個自然模態。兩個同步解的具體形式為:,;,。響應通解的表達式:。15.彈性耦合和慣性耦合的定義分別是什么?自然坐標的定義是什么?對于兩自由度系統的振動,坐標變換矩陣的表達式是什么?答:(1)彈性耦合定義:研究系統運動微分方程的矩陣形式,當其中的剛度矩陣是非對角矩陣
15、,則稱這種耦合方式為彈性耦合;慣性耦合的定義:研究系統運動微分方程的矩陣形式,當其中的質量矩陣是非對角矩陣,則稱這種耦合方式為慣性耦合。(2)自然坐標的定義:是在對描述系統運動方程 的通解時提出的,引入自然坐標則系統運動方程的通解可寫作(3)兩自由度系統的振動,坐標變換矩陣的表達式是:16.什么叫拍擊現象?對于雙擺系統而言,運動微分方程的通解表達式是什么?拍頻和拍的周期定義是什么?答:(1)當兩自由度系統的兩個自然頻率很接近是,將會出現振幅以一種很低的頻率周期變化的現象,即所謂拍擊現象。(2)運動微分方程的通解:當,時,當,時,當,時,(3)拍頻的定義:,拍的周期:。17.對于兩自由度系統在諧
16、波激勵下的強迫振動,系統響應幅值的表達式是什么?對于無阻尼系統而言,系統響應幅值的表達式是什么?答:(1)兩自由度系統在諧波激勵下的強迫振動系統響應幅值表達式:其中:,。(2)無阻尼時系統響應的幅值表達式:其中:,18.廣義坐標的概念是什么?對于多自由度系統而言,剛度系數、阻尼系數、質量系數的定義是什么?彈簧-質量-阻尼系統的規律是什么?答:(1)振動理論中,把能夠完備的描述系統運動的一組獨立參變量成為系統的廣義坐標(“完備”是指能完全確定系統在任一時刻的位置或形狀;“獨立”是指各個坐標都能在一定范圍內任意取值期間不存在函數關系)。(2)剛度系數:只在坐標上產生單位位移(其他坐標上的位移為零)
17、而在上需要加的力;阻尼系數:只在坐標上有單位速度(其他坐標上的速度為零)時在坐標上所需施加的力;質量系數:只在坐標上有單位加速度(而其他坐標上的加速度為零)時在坐標上所需施加的力。(3)彈簧-質量-阻尼系統的規律:A剛度矩陣(或阻尼矩陣)中的對角元素(或)為聯結在質量上的所有彈簧剛度(或阻尼系數)的和;B剛度矩陣(或阻尼矩陣)中的非對角元素(或)為直接聯結在質量與之間的彈簧剛度(或阻尼系數),取負值;C一般而言,剛度矩陣和阻尼矩陣都是對稱矩陣;D如果將系統質心作為坐標原點,則質量矩陣是對角矩陣,但一般情況下質量矩陣并不一定是對角的。19.對于n自由度無阻尼系統的自由振動,運動微分方程是什么?頻率方程是什么?系統自由振動響應的通解是什么?答:(1)n自由度無阻尼系統的自由振動運動微分方程:頻率方程:系統自由振動相應的通解:20.對于n自由度有阻尼系統的自由振動,運動微分方程是什么?對該方程解耦的方法是什么?具體分析說明。答:(1)對于n自由度有阻尼系統的自由振動運動微分方程:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年項目管理真題模擬試題及答案
- 理財中的法律合規性分析試題及答案
- 證券投資生態變化的典型案例考題及答案
- 高效閱讀材料準備2025年注冊會計師考試試題及答案
- 證券從業資格的核心試題及答案
- 完整注冊會計師考試框架試題及答案
- 針對園藝師考試的個性化備考計劃試題及答案
- 2025年內部審計知識試題及答案
- 農業職業經理人考試難點及解答試題及答案
- 油炸食品制造業中的食品安全與產業鏈協同考核試卷
- 【2025版】人教版一年級數學下冊教學工作計劃(含進度表)
- ISO 37001-2025 反賄賂管理體系要求及使用指南(中文版-雷澤佳譯-2025)
- 《第2課 體驗開源硬件與編程工具應用 主題2 認識microbit加速度傳感器及其應用》參考課件
- 第11課《山地回憶》課件-2024-2025學年統編版語文七年級下冊
- 科學防癌預防先行
- DB4403-T 81-2020 綠化遷移技術規范
- 旅游目的地游客滿意度評價體系-深度研究
- 3.4蛋白質工程的原理和應用課件高二下學期生物人教版選擇性必修3
- 合肥經濟技術開發區公開招聘村(居)社區工作者高頻重點提升(共500題)附帶答案詳解
- 藥物生物活性評價-洞察分析
- 企業能源管理的數字化轉型案例
評論
0/150
提交評論