圓錐曲線的解題技巧和方法2017完美打印版_第1頁
圓錐曲線的解題技巧和方法2017完美打印版_第2頁
圓錐曲線的解題技巧和方法2017完美打印版_第3頁
圓錐曲線的解題技巧和方法2017完美打印版_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、圓錐曲線的解題技巧三、常規(guī)七大題型:(1)中點(diǎn)弦問題 具有斜率的弦中點(diǎn)問題,常用設(shè)而不求法(點(diǎn)差法):設(shè)曲線上兩點(diǎn)為,代入方程,然后兩方程相減,再應(yīng)用中點(diǎn)關(guān)系及斜率公式(當(dāng)然在這里也要注意斜率不存在的請(qǐng)款討論),消去四個(gè)參數(shù)。如:(1)與直線相交于A、B,設(shè)弦AB中點(diǎn)為M(x0,y0),則有。 (2)與直線l相交于A、B,設(shè)弦AB中點(diǎn)為M(x0,y0)則有(3)y2=2px(p>0)與直線l相交于A、B設(shè)弦AB中點(diǎn)為M(x0,y0),則有2y0k=2p,即y0k=p. 典型例題 給定雙曲線。過A(2,1)的直線與雙曲線交于兩點(diǎn) 及,求線段的中點(diǎn)P的軌跡方程。(2)焦點(diǎn)三角形問題 橢圓或雙

2、曲線上一點(diǎn)P,與兩個(gè)焦點(diǎn)、構(gòu)成的三角形問題,常用正、余弦定理搭橋。 典型例題 設(shè)P(x,y)為橢圓上任一點(diǎn),為焦點(diǎn),。(1)求證離心率; (2)求的最值。(3)直線與圓錐曲線位置關(guān)系問題 直線與圓錐曲線的位置關(guān)系的基本方法是解方程組,進(jìn)而轉(zhuǎn)化為一元二次方程后利用判別式、根與系數(shù)的關(guān)系、求根公式等來處理,應(yīng)特別注意數(shù)形結(jié)合的思想,通過圖形的直觀性幫助分析解決問題,如果直線過橢圓的焦點(diǎn),結(jié)合三大曲線的定義去解。典型例題 (1)求證:直線與拋物線總有兩個(gè)不同交點(diǎn) (2)設(shè)直線與拋物線的交點(diǎn)為A、B,且OAOB,求p關(guān)于t的函數(shù)f(t)的表達(dá)式。(4)圓錐曲線的相關(guān)最值(范圍)問題圓錐曲線中的有關(guān)最值

3、(范圍)問題,常用代數(shù)法和幾何法解決。 <1>若命題的條件和結(jié)論具有明顯的幾何意義,一般可用圖形性質(zhì)來解決。<2>若命題的條件和結(jié)論體現(xiàn)明確的函數(shù)關(guān)系式,則可建立目標(biāo)函數(shù)(通常利用二次函數(shù),三角函數(shù),均值不等式)求最值。(1),可以設(shè)法得到關(guān)于a的不等式,通過解不等式求出a的范圍,即:“求范圍,找不等式”。或者將a表示為另一個(gè)變量的函數(shù),利用求函數(shù)的值域求出a的范圍;對(duì)于(2)首先要把NAB的面積表示為一個(gè)變量的函數(shù),然后再求它的最大值,即:“最值問題,函數(shù)思想”。最值問題的處理思路: 1、建立目標(biāo)函數(shù)。用坐標(biāo)表示距離,用方程消參轉(zhuǎn)化為一元二次函數(shù)的最值問題,關(guān)鍵是由方

4、程求x、y的范圍;2、數(shù)形結(jié)合,用化曲為直的轉(zhuǎn)化思想;3、利用判別式,對(duì)于二次函數(shù)求最值,往往由條件建立二次方程,用判別式求最值;4、借助均值不等式求最值。典型例題已知拋物線y2=2px(p>0),過M(a,0)且斜率為1的直線L與拋物線交于不同的兩點(diǎn)A、B,|AB|2p(1)求a的取值范圍;(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求NAB面積的最大值。(5)求曲線的方程問題1曲線的形狀已知-這類問題一般可用待定系數(shù)法解決。典型例題已知直線L過原點(diǎn),拋物線C 的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸正半軸上。若點(diǎn)A(-1,0)和點(diǎn)B(0,8)關(guān)于L的對(duì)稱點(diǎn)都在C上,求直線L和拋物線C的方程。2曲線的形

5、狀未知-求軌跡方程典型例題MNQO已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓C:x2+y2=1, 動(dòng)點(diǎn)M到圓C的切線長與|MQ|的比等于常數(shù)(>0),求動(dòng)點(diǎn)M的軌跡方程,并說明它是什么曲線。(6) 存在兩點(diǎn)關(guān)于直線對(duì)稱問題 在曲線上兩點(diǎn)關(guān)于某直線對(duì)稱問題,可以按如下方式分三步解決:求兩點(diǎn)所在的直線,求這兩直線的交點(diǎn),使這交點(diǎn)在圓錐曲線形內(nèi)。(當(dāng)然也可以利用韋達(dá)定理并結(jié)合判別式來解決)典型例題 已知橢圓C的方程,試確定m的取值范圍,使得對(duì)于直線,橢圓C上有不同兩點(diǎn)關(guān)于直線對(duì)稱(7)兩線段垂直問題 圓錐曲線兩焦半徑互相垂直問題,常用來處理或用向量的坐標(biāo)運(yùn)算來處理。典型例題 已知直線的斜率為,且過點(diǎn)

6、,拋物線,直線與拋物線C有兩個(gè)不同的交點(diǎn)(如圖)。 (1)求的取值范圍;(2)直線的傾斜角為何值時(shí),A、B與拋物線C的焦點(diǎn)連線互相垂直。四、解題的技巧方面: 在教學(xué)中,學(xué)生普遍覺得解析幾何問題的計(jì)算量較大。事實(shí)上,如果我們能夠充分利用幾何圖形、韋達(dá)定理、曲線系方程,以及運(yùn)用“設(shè)而不求”的策略,往往能夠減少計(jì)算量。下面舉例說明:(1)充分利用幾何圖形 解析幾何的研究對(duì)象就是幾何圖形及其性質(zhì),所以在處理解析幾何問題時(shí),除了運(yùn)用代數(shù)方程外,充分挖掘幾何條件,并結(jié)合平面幾何知識(shí),這往往能減少計(jì)算量。 典型例題 設(shè)直線與圓相交于P、Q兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求的值。(2) 充分利用韋達(dá)定理及“設(shè)而不求”

7、的策略我們經(jīng)常設(shè)出弦的端點(diǎn)坐標(biāo)而不求它,而是結(jié)合韋達(dá)定理求解,這種方法在有關(guān)斜率、中點(diǎn)等問題中常常用到。典型例題 已知中心在原點(diǎn)O,焦點(diǎn)在軸上的橢圓與直線相交于P、Q兩點(diǎn),且,求此橢圓方程。(3) 充分利用曲線系方程利用曲線系方程可以避免求曲線的交點(diǎn),因此也可以減少計(jì)算。典型例題 求經(jīng)過兩已知圓和0的交點(diǎn),且圓心在直線:上的圓的方程。(4)充分利用橢圓的參數(shù)方程橢圓的參數(shù)方程涉及到正、余弦,利用正、余弦的有界性,可以解決相關(guān)的求最值的問題這也是我們常說的三角代換法。典型例題 P為橢圓上一動(dòng)點(diǎn),A為長軸的右端點(diǎn),B為短軸的上端點(diǎn),求四邊形OAPB面積的最大值及此時(shí)點(diǎn)P的坐標(biāo)。(5)線段長的幾種簡便計(jì)算方法 充分利用現(xiàn)成結(jié)果,減少運(yùn)算過程 一般地,求直線與圓錐曲線相交的弦AB長的方法是:把直線方程代入圓錐曲線方程中,得到型如的方程,方程的兩根設(shè)為,判別式為,則,若直接用結(jié)論,能減少配方、開方等運(yùn)算過程。例 求直線被橢圓所截得的線段AB的長。 結(jié)合圖形的特殊位置關(guān)系,減少運(yùn)算在求過圓錐曲線焦點(diǎn)的弦長時(shí),由于圓錐曲線的定義都涉及焦點(diǎn),結(jié)合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論