




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、內(nèi)容 任意角和弧度制,任意角的三角函數(shù) 項目具體內(nèi)容:任意角和弧度制,任意角的三角函數(shù)修改意見教學目標理解任意角的概念(包括正角、負角、零角) 與區(qū)間角的概念.會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合理解弧度的意義;了解角的集合與實數(shù)集R之間的可建立起一一對應(yīng)的關(guān)系;熟記特殊角的弧度數(shù)利用三角函數(shù)線表示正弦、余弦、正切的三角函數(shù)值掌握用單位圓中的線段表示三角函數(shù)值,從而使學生對三角函數(shù)的定義域、值域有更深的理解。掌握任意角的三角函數(shù)的定義能根據(jù)三角函數(shù)的定義導(dǎo)出同角三角函數(shù)的基本關(guān)系式及它們之間的聯(lián)系;熟練掌握已知一個角的三角函數(shù)值求其它三角函數(shù)值的方
2、法。教學重點任意角概念的理解;區(qū)間角的集合的書寫能正確地進行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長公式及扇形的面積公式,并能運用公式解決一些實際問題弧度的概念弧長公式及扇形的面積公式的推導(dǎo)與證明正弦、余弦、正切線的概念。任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號),以及這三種函數(shù)的第一組誘導(dǎo)公式。公式一是本小節(jié)的另一個重點。同角三角函數(shù)的基本關(guān)系式教學難點終邊相同角的集合的表示;區(qū)間角的集合的書寫“角度制”與“弧度制”的區(qū)別與聯(lián)系正弦、余弦、正切線的利用。利用與單位圓有關(guān)的有向線段,將任意角的正弦、余弦、正切函數(shù)值分別用他們的集合形式表示出來.三角函數(shù)
3、值的符號的確定,同角三角函數(shù)的基本關(guān)系式的變式應(yīng)用易錯點過程設(shè)計設(shè)計意圖修改意見1角的有關(guān)概念:角的定義:角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形始邊終邊頂點AOB角的名稱:角的分類:負角:按順時針方向旋轉(zhuǎn)形成的角 正角:按逆時針方向旋轉(zhuǎn)形成的角零角:射線沒有任何旋轉(zhuǎn)形成的角注意:在不引起混淆的情況下,“角 ”或“ ”可以簡化成“ ”;零角的終邊與始邊重合,如果是零角 =0°;角的概念經(jīng)過推廣后,已包括正角、負角和零角練習:請說出角、各是多少度?2象限角的概念:定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,
4、我們就說這個角是第幾象限角例1如圖中的角分別屬于第幾象限角?B1yOx45°B2OxB3y30°60o例2在直角坐標系中,作出下列各角,并指出它們是第幾象限的角 60°; 120°; 240°; 300°; 420°; 480°;答:分別為1、2、3、4、1、2象限角終邊相同的角的表示:所有與角終邊相同的角,連同在內(nèi),可構(gòu)成一個集合S | = + k·360 ° ,kZ,即任一與角終邊相同的角,都可以表示成角與整個周角的和注意: kZ 是任一角; 終邊相同的角不一定相等,但相等的角終邊一定相同終
5、邊相同的角有無限個,它們相差360°的整數(shù)倍; 角 + k·720 °與角終邊相同,但不能表示與角終邊相同的所有角例3在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角120°;640 °;950°12答:240°,第三象限角;280°,第四象限角;129°48,第二象限角;例4寫出終邊在y軸上的角的集合(用0°到360°的角表示) 解: | = 90°+ n·180°,nZ例5寫出終邊在上的角的集合S,并把S中
6、適合不等式360°720°的元素寫出來1.1.2弧度制(一)1引入:由角度制的定義我們知道,角度是用來度量角的, 角度制的度量是60進制的,運用起來不太方便.在數(shù)學和其他許多科學研究中還要經(jīng)常用到另一種度量角的制度弧度制,它是如何定義呢?2定 義我們規(guī)定,長度等于半徑的弧所對的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制在弧度制下, 1弧度記做1rad在實際運算中,常常將rad單位省略3思考:(1)一定大小的圓心角所對應(yīng)的弧長與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?(2)引導(dǎo)學生完成P6的探究并歸納:弧度制的性質(zhì):半圓所對的圓心角為 整圓所對的圓心角為正角
7、的弧度數(shù)是一個正數(shù) 負角的弧度數(shù)是一個負數(shù)零角的弧度數(shù)是零 角的弧度數(shù)的絕對值|=4角度與弧度之間的轉(zhuǎn)換: 將角度化為弧度:; ;將弧度化為角度:;5常規(guī)寫法: 用弧度數(shù)表示角時,常常把弧度數(shù)寫成多少 的形式, 不必寫成小數(shù) 弧度與角度不能混用6特殊角的弧度角度0°30°45°60°90°120°135°150°180°270°360°弧度07弧長公式弧長等于弧所對應(yīng)的圓心角(的弧度數(shù))的絕對值與半徑的積例1把67°30化成弧度例2把化成度例3計算:;例4將下列各角化成0到2
8、的角加上2k(kZ)的形式:;例5將下列各角化成2k + (kZ,02)的形式,并確定其所在的象限; 證法一:圓的面積為,圓心角為1rad的扇形面積為,又扇形弧長為l,半徑為R, 扇形的圓心角大小為rad, 扇形面積證法二:設(shè)圓心角的度數(shù)為n,則在角度制下的扇形面積公式為,又此時弧長,可看出弧度制與角度制下的扇形面積公式可以互化,而弧度制下的扇形面積公式顯然要簡潔得多4-1.2.1任意角的三角函數(shù)(三)當角的終邊上一點的坐標滿足時,有三角函數(shù)正弦、余弦、正切值的幾何表示三角函數(shù)線。1有向線段:坐標軸是規(guī)定了方向的直線,那么與之平行的線段亦可規(guī)定方向。規(guī)定:與坐標軸方向一致時為正,與坐標方向相反
9、時為負。有向線段:帶有方向的線段。2三角函數(shù)線的定義:設(shè)任意角的頂點在原點,始邊與軸非負半軸重合,終邊與單位圓相交與點,過作軸的垂線,垂足為;過點作單位圓的切線,它與角的終邊或其反向延長線交與點.()()()()由四個圖看出:當角的終邊不在坐標軸上時,有向線段,于是有, ,我們就分別稱有向線段為正弦線、余弦線、正切線。說明:(1)三條有向線段的位置:正弦線為的終邊與單位圓的交點到軸的垂直線段;余弦線在軸上;正切線在過單位圓與軸正方向的交點的切線上,三條有向線段中兩條在單位圓內(nèi),一條在單位圓外。(2)三條有向線段的方向:正弦線由垂足指向的終邊與單位圓的交點;余弦線由原點指向垂足;正切線由切點指向
10、與的終邊的交點。(3)三條有向線段的正負:三條有向線段凡與軸或軸同向的為正值,與軸或軸反向的為負值。(4)三條有向線段的書寫:有向線段的起點字母在前,終點字母在后面。4例題分析:例1作出下列各角的正弦線、余弦線、正切線。(1); (2); (3); (4)解:圖略。例2. 例5. 利用單位圓寫出符合下列條件的角x的范圍 答案:(1);(2)4-1.2.1任意角的三角函數(shù)(1)1三角函數(shù)定義在直角坐標系中,設(shè)是一個任意角,終邊上任意一點(除了原點)的坐標為,它與原點的距離為,那么(1)比值叫做的正弦,記作,即;(2)比值叫做的余弦,記作,即;(3)比值叫做的正切,記作,即;(4)比值叫做的余切,
11、記作,即;說明:的始邊與軸的非負半軸重合,的終邊沒有表明一定是正角或負角,以及的大小,只表明與的終邊相同的角所在的位置; 根據(jù)相似三角形的知識,對于確定的角,四個比值不以點在的終邊上的位置的改變而改變大小;當時,的終邊在軸上,終邊上任意一點的橫坐標都等于,所以無意義;同理當時,無意義;除以上兩種情況外,對于確定的值,比值、分別是一個確定的實數(shù),正弦、余弦、正切、余切是以角為自變量,比值為函數(shù)值的函數(shù),以上四種函數(shù)統(tǒng)稱為三角函數(shù)。函 數(shù)定 義 域值 域2三角函數(shù)的定義域、值域注意:(1)在平面直角坐標系內(nèi)研究角的問題,其頂點都在原點,始邊都與x軸的非負半軸重合.(2) 是任意角,射線OP是角的終
12、邊,的各三角函數(shù)值(或是否有意義)與ox轉(zhuǎn)了幾圈,按什么方向旋轉(zhuǎn)到OP的位置無關(guān).(3)sin是個整體符號,不能認為是“sin”與“”的積.其余五個符號也是這樣.(4)任意角的三角函數(shù)的定義與銳角三角函數(shù)的定義的聯(lián)系與區(qū)別:銳角三角函數(shù)是任意角三角函數(shù)的一種特例,它們的基礎(chǔ)共建立于相似(直角)三角形的性質(zhì),“r”同為正值. 所不同的是,銳角三角函數(shù)是以邊的比來定義的,任意角的三角函數(shù)是以坐標與距離、坐標與坐標、距離與坐標的比來定義的,它也適合銳角三角函數(shù)的定義.實質(zhì)上,由銳角三角函數(shù)的定義到任意角的三角函數(shù)的定義是由特殊到一般的認識和研究過程.(5)為了便于記憶,我們可以利用兩種三角函數(shù)定義的
13、一致性,將直角三角形置于平面直角坐標系的第一象限,使一銳角頂點與原點重合,一直角邊與x軸的非負半軸重合,利用我們熟悉的銳角三角函數(shù)類比記憶.3例題分析例1求下列各角的四個三角函數(shù)值: (通過本例總結(jié)特殊角的三角函數(shù)值)(1); (2); (3) 解:(1)因為當時,所以, , , 不存在。(2)因為當時,所以, , , 不存在,(3)因為當時,所以, , 不存在, ,例2已知角的終邊經(jīng)過點,求的四個函數(shù)值。解:因為,所以,于是; ; 例3已知角的終邊過點,求的四個三角函數(shù)值。解:因為過點,所以, 當;當; 4三角函數(shù)的符號由三角函數(shù)的定義,以及各象限內(nèi)點的坐標的符號,我們可以得知:正弦值對于第
14、一、二象限為正(),對于第三、四象限為負();余弦值對于第一、四象限為正(),對于第二、三象限為負();正切值對于第一、三象限為正(同號),對于第二、四象限為負(異號)說明:若終邊落在軸線上,則可用定義求出三角函數(shù)值。練習: 確定下列三角函數(shù)值的符號:(1); (2); (3); (4)例4求證:若且,則角是第三象限角,反之也成立。5誘導(dǎo)公式由三角函數(shù)的定義,就可知道:終邊相同的角三角函數(shù)值相同。即有:,其中,這組公式的作用是可把任意角的三角函數(shù)值問題轉(zhuǎn)化為02間角的三角函數(shù)值問題例5求下列三角函數(shù)的值:(1), (2),例6求函數(shù)的值域解: 定義域:cosx¹0 x的終邊不在x軸上
15、 又tanx¹0 x的終邊不在y軸上當x是第象限角時, cosx=|cosx| tanx=|tanx| y=2 , |cosx|=-cosx |tanx|=-tanx y=-2, |cosx|=-cosx |tanx|=tanx y=04-1.2.2同角三角函數(shù)的基本關(guān)系(一)同角三角函數(shù)的基本關(guān)系式:(板書課題:同角的三角函數(shù)的基本關(guān)系)由三角函數(shù)的定義,我們可以得到以下關(guān)系:(1)商數(shù)關(guān)系: (2)平方關(guān)系:說明:注意“同角”,至于角的形式無關(guān)重要,如等;注意這些關(guān)系式都是對于使它們有意義的角而言的,如;對這些關(guān)系式不僅要牢固掌握,還要能靈活運用(正用、反用、變形用),如:, ,
16、 等。2例題分析:一、求值問題例1(1)已知,并且是第二象限角,求(2)已知,求解:(1), 又是第二象限角, ,即有,從而, (2), ,又, 在第二或三象限角。當在第二象限時,即有,從而,;當在第四象限時,即有,從而,總結(jié):已知一個角的某一個三角函數(shù)值,便可運用基本關(guān)系式求出其它三角函數(shù)值。在求值中,確定角的終邊位置是關(guān)鍵和必要的。有時,由于角的終邊位置的不確定,因此解的情況不止一種。解題時產(chǎn)生遺漏的主要原因是:沒有確定好或不去確定角的終邊位置;利用平方關(guān)系開平方時,漏掉了負的平方根。例2已知為非零實數(shù),用表示解:,即有,又為非零實數(shù),為象限角。當在第一、四象限時,即有,從而, ;當在第二、三象限時,即有,從而, 例3、已知,求 解: 強調(diào)(指出)技巧:1° 分子、分母是正余弦的一次(或二次)齊次式注意所求值式的分子、分母均為一次齊次式,把分子、分母同除以,將分子、分母轉(zhuǎn)化為的代數(shù)式;2° “化1法”可利用平方關(guān)系,將分子、分母都變?yōu)槎锡R次式,再利用商數(shù)關(guān)系化歸為的分式求值;小結(jié):化簡三角函數(shù)式,化簡的一般要求是:(1)盡量使函數(shù)種類最少,項數(shù)最少,次數(shù)最低;(2)盡量使分母不含三角函數(shù)式;(3)根式內(nèi)的三角函數(shù)式盡量開出來;(4)能求得數(shù)值的應(yīng)計算出來,其次要注意在三角函數(shù)式變形時,常將式子中的“1”作巧妙的變形,二、化簡練習1化簡解:原式練習2三、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年馬拉松比賽合作協(xié)議書
- 房地產(chǎn)公司會計交接流程示例
- 2024-2025學年蘇教版六年級音樂第一學期教學計劃
- 2025-2030中國足療行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 可持續(xù)發(fā)展領(lǐng)域的博士研修計劃
- 英語游戲互動活動計劃
- 出版社年檢自查報告范文
- 浙江南部近岸海域底棲有孔蟲種群結(jié)構(gòu)及其對重金屬的響應(yīng)
- 2025年快餐行業(yè)服務(wù)提升計劃
- 部編版二年級上冊節(jié)日文化教學計劃
- 【中考真題】廣西壯族自治區(qū)2024年中考語文真題試卷
- 跨學科主題學習 做時間的主人 學案 蘇科版三上信息科技
- 馬斯克課件完整版本
- 果樹病蟲害生物防治技術(shù)規(guī)程
- 行政復(fù)議法-形考作業(yè)3-國開(ZJ)-參考資料
- 2069-3-3101-002WKB產(chǎn)品判定準則-外發(fā)
- 外科常見手術(shù)備皮
- 抑郁癥的早期識別和干預(yù)
- 大型商業(yè)綜合體弱電智能化規(guī)劃方案大型商場智能化系統(tǒng)設(shè)計方案城市綜合體弱電方案
- T-CITSA 20-2022 道路交叉路口交通信息全息采集系統(tǒng)通用技術(shù)條件
- 護士行為規(guī)范及護理核心制度
評論
0/150
提交評論