常用數(shù)學公式大全_第1頁
常用數(shù)學公式大全_第2頁
常用數(shù)學公式大全_第3頁
常用數(shù)學公式大全_第4頁
常用數(shù)學公式大全_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、常用數(shù)學公式大全1、每份數(shù)×份數(shù)總數(shù)總數(shù)÷每份數(shù)份數(shù)總數(shù)÷份數(shù)每份數(shù)2、1倍數(shù)×倍數(shù)幾倍數(shù)幾倍數(shù)÷1倍數(shù)倍數(shù)幾倍數(shù)÷倍數(shù)1倍數(shù)3、速度×時間路程路程÷速度時間路程÷時間速度4、單價×數(shù)量總價總價÷單價數(shù)量總價÷數(shù)量單價5、工作效率×工作時間工作總量工作總量÷工作效率工作時間工作總量÷工作時間工作效率6、加數(shù)加數(shù)和和一個加數(shù)另一個加數(shù)7、被減數(shù)減數(shù)差被減數(shù)差減數(shù)差減數(shù)被減數(shù)8、因數(shù)×因數(shù)積積÷一個因數(shù)另一個因數(shù)9、被除數(shù)

2、7;除數(shù)商被除數(shù)÷商除數(shù)商×除數(shù)被除數(shù)小學數(shù)學圖形計算公式1、正方形C周長S面積a邊長周長邊長×4C=4a面積=邊長×邊長S=a×a2、正方體V:體積a:棱長表面積=棱長×棱長×6S表=a×a×6體積=棱長×棱長×棱長V=a×a×a3、長方形C周長S面積a邊長周長=(長+寬)×2C=2(a+b)面積=長×寬S=ab4、長方體V:體積s:面積a:長b:寬h:高(1)表面積(長×寬+長×高+寬×高)×2S=2(

3、ab+ah+bh)(2)體積=長×寬×高V=abh5三角形s面積a底h高面積=底×高÷2s=ah÷2三角形高=面積×2÷底三角形底=面積×2÷高6平行四邊形s面積a底h高面積=底×高s=ah7梯形s面積a上底b下底h高面積=(上底+下底)×高÷2 s=(a+b)×h÷28圓形S面積C周長d=直徑r=半徑(1)周長=直徑×=2××半徑 C=d=2r(2)面積=半徑×半徑×9圓柱體v:體積h:高s;底面積r:底

4、面半徑c:底面周長(1)側面積=底面周長×高(2)表面積=側面積+底面積×2(3)體積=底面積×高(4)體積側面積÷2×半徑10圓錐體v:體積h:高s;底面積r:底面半徑體積=底面積×高÷3總數(shù)÷總份數(shù)平均數(shù)和差問題的公式(和差)÷2大數(shù)(和差)÷2小數(shù)和倍問題和÷(倍數(shù)1)小數(shù)小數(shù)×倍數(shù)大數(shù)(或者和小數(shù)大數(shù))差倍問題差÷(倍數(shù)1)小數(shù)小數(shù)×倍數(shù)大數(shù)(或小數(shù)差大數(shù))植樹問題1非封閉線路上的植樹問題主要可分為以下三種情形:如果在非封閉線路的兩端都要植樹,那么

5、:株數(shù)段數(shù)1全長÷株距1全長株距×(株數(shù)1)株距全長÷(株數(shù)1)如果在非封閉線路的一端要植樹,另一端不要植樹,那么:株數(shù)段數(shù)全長÷株距全長株距×株數(shù)株距全長÷株數(shù)如果在非封閉線路的兩端都不要植樹,那么:株數(shù)段數(shù)1全長÷株距1全長株距×(株數(shù)1)株距全長÷(株數(shù)1)2封閉線路上的植樹問題的數(shù)量關系如下株數(shù)段數(shù)全長÷株距全長株距×株數(shù)株距全長÷株數(shù)盈虧問題(盈虧)÷兩次分配量之差參加分配的份數(shù)(大盈小盈)÷兩次分配量之差參加分配的份數(shù)(大虧小虧)÷兩

6、次分配量之差參加分配的份數(shù)相遇問題相遇路程速度和×相遇時間相遇時間相遇路程÷速度和速度和相遇路程÷相遇時間追及問題追及距離速度差×追及時間追及時間追及距離÷速度差速度差追及距離÷追及時間流水問題順流速度靜水速度水流速度逆流速度靜水速度水流速度靜水速度(順流速度逆流速度)÷2水流速度(順流速度逆流速度)÷2濃度問題溶質的重量溶劑的重量溶液的重量溶質的重量÷溶液的重量×100%濃度溶液的重量×濃度溶質的重量溶質的重量÷濃度溶液的重量利潤與折扣問題利潤售出價成本利潤率利潤÷

7、;成本×100%(售出價÷成本1)×100%漲跌金額本金×漲跌百分比折扣實際售價÷原售價×100%(折扣1)利息本金×利率×時間稅后利息本金×利率×時間×(120%)長度單位換算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面積單位換算1平方千米=100公頃1公頃=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米體(容)積單位換算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米

8、=1毫升1立方米=1000升重量單位換算1噸=1000千克1千克=1000克1千克=1公斤人民幣單位換算1元=10角1角=10分1元=100分時間單位換算1世紀=100年1年=12月大月(31天)有:135781012月小月(30天)的有:46911月平年2月28天,閏年2月29天平年全年365天,閏年全年366天1日=24小時1時=60分1分=60秒1時=3600秒小學數(shù)學幾何形體周長面積體積計算公式1、長方形的周長=(長+寬)×2C=(a+b)×22、正方形的周長=邊長×4C=4a3、長方形的面積=長×寬S=ab4、正方形的面積=邊長×邊長

9、S=a.a=a5、三角形的面積=底×高÷2S=ah÷26、平行四邊形的面積=底×高S=ah7、梯形的面積=(上底+下底)×高÷2S=(ab)h÷28、直徑=半徑×2d=2r半徑=直徑÷2r=d÷29、圓的周長=圓周率×直徑=圓周率×半徑×2c=d=2r10、圓的面積=圓周率×半徑×半徑定義定理公式三角形的面積底×高÷2。公式S=a×h÷2正方形的面積邊長×邊長公式S=a×a長方形的面積長

10、×寬公式S=a×b平行四邊形的面積底×高公式S=a×h梯形的面積(上底+下底)×高÷2公式S=(a+b)h÷2內(nèi)角和:三角形的內(nèi)角和180度。長方體的體積長×寬×高公式:V=abh長方體(或正方體)的體積底面積×高公式:V=abh正方體的體積棱長×棱長×棱長公式:V=aaa圓的周長直徑×公式:Ld2r圓的面積半徑×半徑×公式:Sr2圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。公式:S=ch=dh2rh圓柱的表面積:圓柱的表面積等于底

11、面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2r2圓柱的體積:圓柱的體積等于底面積乘高。公式:V=Sh圓錐的體積1/3底面×積高。公式:V=1/3Sh分數(shù)的加、減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。分數(shù)的乘法則:用分子的積做分子,用分母的積做分母。分數(shù)的除法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。單位換算(1)1公里1千米1千米1000米1米10分米1分米10厘米1厘米10毫米(2)1平方米100平方分米1平方分米100平方厘米1平方厘米100平方毫米(3)1立方米1000立方分米1立方分米1000立方厘米1立方厘

12、米1000立方毫米(4)1噸1000千克1千克=1000克=1公斤=2市斤(5)1公頃10000平方米1畝666.666平方米(6)1升1立方分米1000毫升1毫升1立方厘米數(shù)量關系計算公式方面1單價×數(shù)量總價2單產(chǎn)量×數(shù)量總產(chǎn)量3速度×時間路程4工效×時間工作總量小學數(shù)學定義定理公式(二)一、算術方面1加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變。2加法結合律:三個數(shù)相加,先把前兩個數(shù)相加,或先把后兩個數(shù)相加,再同第三個數(shù)相加,和不變。3乘法交換律:兩數(shù)相乘,交換因數(shù)的位置,積不變。4乘法結合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或先把后兩個數(shù)相乘,再和第三

13、個數(shù)相乘,它們的積不變。5乘法分配律:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結果不變。如:(2+4)×52×5+4×5。6除法的性質:在除法里,被除數(shù)和除數(shù)同時擴大(或縮小)相同的倍數(shù),商不變。0除以任何不是0的數(shù)都得0。7等式:等號左邊的數(shù)值與等號右邊的數(shù)值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數(shù),等式仍然成立。8方程式:含有未知數(shù)的等式叫方程式。9一元一次方程式:含有一個未知數(shù),并且未知數(shù)的次數(shù)是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有的算式并計算。10分數(shù):把

14、單位“1”平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分數(shù)。11分數(shù)的加減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。12分數(shù)大小的比較:同分母的分數(shù)相比較,分子大的大,分子小的小。異分母的分數(shù)相比較,先通分然后再比較;若分子相同,分母大的反而小。13分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變。14分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作為分母。15分數(shù)除以整數(shù)(0除外),等于分數(shù)乘以這個整數(shù)的倒數(shù)。16真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。17假分數(shù):分子比分母大或者分子和分母相等的分數(shù)叫做假分數(shù)。假分數(shù)大于或等于1。18

15、帶分數(shù):把假分數(shù)寫成整數(shù)和真分數(shù)的形式,叫做帶分數(shù)。19分數(shù)的基本性質:分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分數(shù)的大小不變。20一個數(shù)除以分數(shù),等于這個數(shù)乘以分數(shù)的倒數(shù)。21甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘以乙數(shù)的倒數(shù)。數(shù)學公式 數(shù)學公式,是表征自然界不同事物之數(shù)量之間的或等或不等的聯(lián)系,它確切的反映了事物內(nèi)部和外部的關系,是我們從一種事物到達另一種事物的依據(jù),使我們更好的理解事物的本質和內(nèi)涵。 如一些基本公式 拋物線:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0時開口向上 a < 0時開口向下 c = 0時拋物線經(jīng)過原點

16、 b = 0時拋物線對稱軸為y軸 還有頂點式y(tǒng) = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是頂點坐標的x k是頂點坐標的y 一般用于求最大值與最小值 拋物線標準方程:y2=2px 它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0) 準線方程為x=-p/2 由于拋物線的焦點可在任意半軸,故共有標準方程y2=2px y2=-2px x2=2py x2=-2py 圓:體積=4/3(pi)(r3) 面積=(pi)(r2) 周長=2(pi)r 圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標 圓的一般方程 x2+y2+Dx+Ey+F=0 注:D

17、2+E2-4F>0 (一)橢圓周長計算公式 橢圓周長公式:L=2b+4(a-b) 橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2b)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。 (二)橢圓面積計算公式 橢圓面積公式: S=ab 橢圓面積定理:橢圓的面積等于圓周率()乘該橢圓長半軸長(a)與短半軸長(b)的乘積。 以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個公式都是通過橢圓周率T推導演變而來。常數(shù)為體,公式為用。 橢圓形物體 體積計算公式橢圓 的 長半徑*短半徑*PAI*高 三角函數(shù): 兩角和公式 sin(A+B)=sinAcosB+cosAsinB si

18、n(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

19、sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及 sin2()+sin2(-2/3)+sin2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 四倍角公式: sin4A=-4*(cosA*sinA*(2*sinA2-1) cos4A=1+(-8*cosA2+8*cosA4) tan4A=(4*tanA-4*tanA3)/(1-6*tanA2+tanA4) 五倍角公式: sin5

20、A=16sinA5-20sinA3+5sinA cos5A=16cosA5-20cosA3+5cosA tan5A=tanA*(5-10*tanA2+tanA4)/(1-10*tanA2+5*tanA4) 六倍角公式: sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA2) cos6A=(-1+2*cosA2)*(16*cosA4-16*cosA2+1) tan6A=(-6*tanA+20*tanA3-6*tanA5)/(-1+15*tanA2-15*tanA4+tanA6) 七倍角公式: sin7A=-(sinA*(56*sinA2-112

21、*sinA4-7+64*sinA6) cos7A=(cosA*(56*cosA2-112*cosA4+64*cosA6-7) tan7A=tanA*(-7+35*tanA2-21*tanA4+tanA6)/(-1+21*tanA2-35*tanA4+7*tanA6) 八倍角公式: sin8A=-8*(cosA*sinA*(2*sinA2-1)*(-8*sinA2+8*sinA4+1) cos8A=1+(160*cosA4-256*cosA6+128*cosA8-32*cosA2) tan8A=-8*tanA*(-1+7*tanA2-7*tanA4+tanA6)/(1-28*tanA2+70*t

22、anA4-28*tanA6+tanA8) 九倍角公式: sin9A=(sinA*(-3+4*sinA2)*(64*sinA6-96*sinA4+36*sinA2-3) cos9A=(cosA*(-3+4*cosA2)*(64*cosA6-96*cosA4+36*cosA2-3) tan9A=tanA*(9-84*tanA2+126*tanA4-36*tanA6+tanA8)/(1-36*tanA2+126*tanA4-84*tanA6+9*tanA8) 十倍角公式: sin10A=2*(cosA*sinA*(4*sinA2+2*sinA-1)*(4*sinA2-2*sinA-1)*(-20*s

23、inA2+5+16*sinA4) cos10A=(-1+2*cosA2)*(256*cosA8-512*cosA6+304*cosA4-48*cosA2+1) tan10A=-2*tanA*(5-60*tanA2+126*tanA4-60*tanA6+5*tanA8)/(-1+45*tanA2-210*tanA4+210*tanA6-45*tanA8+tanA10) ·萬能公式: sin=2tan(/2)/1+tan2(/2) cos=1-tan2(/2)/1+tan2(/2) tan=2tan(/2)/1-tan2(/2) 半角公式 sin(A/2)=(1-cosA)/2) sin

24、(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA) cot(A/2)=(1+cosA)/(1-cosA) cot(A/2)=-(1+cosA)/(1-cosA) 和差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=

25、2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB 某些數(shù)列前n項和 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2=n(n+1)(2n

26、+1)/6 13+23+33+43+53+63+n3=(n(n+1)/2)2 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑 余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角 乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b<=>-bab |a-b|a|-|b| -|a|

27、a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根與系數(shù)的關系 x1+x2=-b/a x1*x2=c/a 注:韋達定理 判別式 b2-4a=0 注:方程有相等的兩實根 b2-4ac>0 注:方程有兩個不相等的個實根 b2-4ac<0 注:方程有共軛復數(shù)根 公式分類 公式表達式 圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標 圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱側面積 S=c*h 斜棱柱側面積 S

28、=c'*h 正棱錐側面積 S=1/2c*h' 正棱臺側面積 S=1/2(c+c')h' 圓臺側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l 弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側棱長 柱體體積公式 V=s*h 圓柱體 V=pi*r2h 圖形

29、周長 面積 體積公式 長方形的周長=(長+寬)×2 正方形的周長=邊長×4 長方形的面積=長×寬 正方形的面積=邊長×邊長 三角形的面積 已知三角形底a,高h,則Sah/2 已知三角形三邊a,b,c,半周長p,則S p(p - a)(p - b)(p - c) (海倫公式)(p=(a+b+c)/2) 和:(a+b+c)*(a+b-c)*1/4 已知三角形兩邊a,b,這兩邊夾角C,則SabsinC/2 設三角形三邊分別為a、b、c,內(nèi)切圓半徑為r 則三角形面積=(a+b+c)r/2 設三角形三邊分別為a、b、c,外接圓半徑為r 則三角形面積=abc/4r

30、已知三角形三邊a、b、c,則S 1/4c2a2-(c2+a2-b2)/2)2 (“三斜求積” 南宋秦九韶) | a b 1 | S=1/2 * | c d 1 | | e f 1 | 【| a b 1 | | c d 1 | 為三階行列式,此三角形ABC在平面直角坐標系內(nèi)A(a,b),B(c,d), C(e,f),這里ABC | e f 1 | 選區(qū)取最好按逆時針順序從右上角開始取,因為這樣取得出的結果一般都為正值,如果不按這個規(guī)則取,可能會得到負值,但不要緊,只要取絕對值就可以了,不會影響三角形面積的大小!】 秦九韶三角形中線面積公式: S=(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc

31、+Ma-Mb)*(Ma+Mb-Mc)/3 其中Ma,Mb,Mc為三角形的中線長. 平行四邊形的面積=底×高 梯形的面積=(上底+下底)×高÷2 直徑=半徑×2 半徑=直徑÷2 圓的周長=圓周率×直徑= 圓周率×半徑×2 圓的面積=圓周率×半徑×半徑 長方體的表面積= (長×寬+長×高寬×高)×2 長方體的體積 =長×寬×高 正方體的表面積=棱長×棱長×6 正方體的體積=棱長×棱長×棱長 圓柱的側面

32、積=底面圓的周長×高 圓柱的表面積=上下底面面積+側面積 圓柱的體積=底面積×高 圓錐的體積=底面積×高÷3 長方體(正方體、圓柱體) 的體積=底面積×高 平面圖形 名稱 符號 周長C和面積S 正方形 a邊長 C4a Sa2 長方形 a和b邊長 C2(a+b) Sab 三角形 a,b,c三邊長 ha邊上的高 s周長的一半 A,B,C內(nèi)角 其中s(a+b+c)/2 Sah/2 ab/2?sinC s(s-a)(s-b)(s-c)1/2 a2sinBsinC/(2sinA) 1 過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補角相等

33、 4 同角或等角的余角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯角相等,兩直線平行 11 同旁內(nèi)角互補,兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯角相等 14 兩直線平行,同旁內(nèi)角互補 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180° 18 推論1 直角三角形的兩個銳

34、角互余 19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和 20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角 21 全等三角形的對應邊、對應角相等 22邊角邊公理(sas) 有兩邊和它們的夾角對應相等的兩個三角形全等 23 角邊角公理( asa)有兩角和它們的夾邊對應相等的兩個三角形全等 24 推論(aas) 有兩角和其中一角的對邊對應相等的兩個三角形全等 25 邊邊邊公理(sss) 有三邊對應相等的兩個三角形全等 26 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等 28 定理2 到一個角的

35、兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個角都等于60° 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) 35 推論1 三個角都相等的三角形是等邊三角形 36 推論 2 有一個角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,

36、如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 42 定理1 關于某條直線對稱的兩個圖形是全等形 43 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線 44定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上 45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形

37、關于這條直線對稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2 ,那么這個三角形是直角三角形 48定理 四邊形的內(nèi)角和等于360° 49四邊形的外角和等于360° 50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180° 51推論 任意多邊的外角和等于360° 52平行四邊形性質定理1 平行四邊形的對角相等 53平行四邊形性質定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質定理3 平行

38、四邊形的對角線互相平分 56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質定理1 矩形的四個角都是直角 61矩形性質定理2 矩形的對角線相等 62矩形判定定理1 有三個角是直角的四邊形是矩形 63矩形判定定理2 對角線相等的平行四邊形是矩形 64菱形性質定理1 菱形的四條邊都相等 65菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 66菱形面積=對角線乘積的一半

39、,即s=(a×b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對角線互相垂直的平行四邊形是菱形 69正方形性質定理1 正方形的四個角都是直角,四條邊都相等 70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 71定理1 關于中心對稱的兩個圖形是全等的 72定理2 關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分 73逆定理 如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱 74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 75等腰梯形的兩條對角線相等 7

40、6等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 77對角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等 79 推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰 80 推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊 81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半 82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 l=(a+b)÷2 s=l×h 83 (1)比例的基本性質 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:

41、b=c:d 84 (2)合比性質 如果ab=cd,那么(a±b)b=(c±d)d 85 (3)等比性質 如果ab=cd=mn(b+d+n0),那么 (a+c+m)(b+d+n)=ab 86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例 87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊 89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 90 定理 平行于三角形一

42、邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似 91 相似三角形判定定理1 兩角對應相等,兩三角形相似(asa) 92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(sas) 94 判定定理3 三邊對應成比例,兩三角形相似(sss) 95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似 96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比 97 性質定理2 相似三角形周長的比等于相似比 98 性質定理3

43、相似三角形面積的比等于相似比的平方 99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值 100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值 101圓是定點的距離等于定長的點的集合 102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合 103圓的外部可以看作是圓心的距離大于半徑的點的集合 104同圓或等圓的半徑相等 105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓 106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線 107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線 109定理 不在同一直線上的三點確定一個圓。 110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧 111推論1 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 弦的垂直平分線經(jīng)過圓心,并且

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論