




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、文檔供參考,可復(fù)制、編制,期待您的好評(píng)與關(guān)注! 新課標(biāo)高中數(shù)學(xué)必修4基礎(chǔ)知識(shí)匯整第一部分 三角函數(shù)與三角恒等變換1 角度制與弧度制的互化:弧度,弧度,弧度. 弧長公式:;扇形面積公式:.2三角函數(shù)定義: 設(shè)是一個(gè)任意角,終邊與單位圓交于點(diǎn)P(x,y),那么y叫作的正弦,記作sin;x叫作的余弦,記作cos;叫作的正切,記作tan. 角中邊上任意一點(diǎn)為,設(shè),則:.三角函數(shù)符號(hào)規(guī)律:一全正,二正弦,三正切,四余弦.3三角函數(shù)線:正弦線:MP; 余弦線:OM; 正切線: AT.4誘導(dǎo)公式: 角函數(shù)正弦余弦正切/六組誘導(dǎo)公式統(tǒng)一為“”,記憶口訣:奇變偶不變,符號(hào)看象限.5同角三角函數(shù)基本關(guān)系:(平方關(guān)
2、系);(商數(shù)關(guān)系).6兩角和與差的正弦、余弦、正切: ; ; .7二倍角公式: ; ; .變形:;. (降次公式)8化一:=. 9. 物理意義:物理簡諧運(yùn)動(dòng),其中. 振幅為A,表示物體離開平衡位置的最大距離;周期為,表示物體往返運(yùn)動(dòng)一次所需的時(shí)間;頻率為,表示物體在單位時(shí)間內(nèi)往返運(yùn)動(dòng)的次數(shù);為相位;為初相.10三角函數(shù)圖象與性質(zhì):函 數(shù)圖象作圖:五點(diǎn)法作圖:五點(diǎn)法作圖:三點(diǎn)二線定 義 域(,)(,)值 域1,11,1(,)極 值當(dāng)x2k,ymax=1;當(dāng)x2kymin=-1當(dāng)x2k,ymax1;當(dāng)x2k,ymin1無奇偶奇函數(shù)偶函數(shù)奇函數(shù)T22單 調(diào) 性遞增遞減遞增遞減遞增對稱軸X=+ kX=
3、k無對稱點(diǎn)(k,0)(+ k,0)(,0)(注:表中k均為整數(shù))11. 正弦型函數(shù)的性質(zhì)及研究思路: 最小正周期,值域?yàn)? 五點(diǎn)法圖:把“”看成一個(gè)整體,取時(shí)的五個(gè)自變量值,相應(yīng)的函數(shù)值為,描出五個(gè)關(guān)鍵點(diǎn),得到一個(gè)周期內(nèi)的圖象. 三角函數(shù)圖象變換路線: . 或: . 單調(diào)性:的增區(qū)間,把“”代入到增區(qū)間,即求解. 整體思想:把“”看成一個(gè)整體,代入與的性質(zhì)中進(jìn)行求解. 這種整體思想的運(yùn)用,主要體現(xiàn)在求單調(diào)區(qū)間時(shí),或取最大值與最小值時(shí)的自變量取值.第二部分 平面向量1. 向量與數(shù)量:在數(shù)學(xué)中,我們把既有大小,又有方向的量叫做向量,反之,把只有大小,沒有方向的量稱為數(shù)量. 向量常用有向線段來表示,
4、記為或(起點(diǎn)A,終點(diǎn)B). 向量的大小叫做向量的長度(或模),記為或. 規(guī)定長度為0的向量叫做零向量,記為;長度等于1個(gè)單位的向量稱為單位向量.2. 平行向量:方向相同或相反的非零向量叫做平行向量,記作,并規(guī)定零向量平行于任意一個(gè)向量. 平行向量都可以移到同一直線上,因而也叫共線向量. 方向相同且長度相等的向量稱為相等向量,記作. 與向量長度相等而方向相反的向量,稱為的相反向量,記為,規(guī)定零向量的相反向量仍是零向量. 3. 向量加減法:向量加減法運(yùn)算遵循三角形法則與平行四邊形法則.如圖所示,已知非零向量,在平面內(nèi)任取一點(diǎn)O,作,則向量. 若作,則向量.向量的加減法滿足:交換律;結(jié)合律.向量不等
5、式:對于任意兩個(gè)向量,有.向量加法多邊形法則:向量首尾相接,結(jié)果首尾連.4. 向量數(shù)乘運(yùn)算:實(shí)數(shù)與向量的乘積仍然是一個(gè)向量,這種運(yùn)算稱為向量的數(shù)乘,記作,并規(guī)定: ;當(dāng)時(shí),的方向與的方向相同;當(dāng)時(shí),的方向與的方向相反;當(dāng)時(shí),. 數(shù)乘運(yùn)算滿足:分配律、;結(jié)合律.對于任意向量,以及任意實(shí)數(shù),恒有.向量的加、減、數(shù)乘運(yùn)算統(tǒng)稱為向量的線性運(yùn)算.5. 平面向量基本定理:如果是同一平面內(nèi)的兩個(gè)不共線向量,那么對這一平面內(nèi)的任意向量,有且只有一對實(shí)數(shù),使. 把不共線的向量叫做表示這一平面內(nèi)所有向量的一組基底.向量夾角:對兩個(gè)非零向量,在平面內(nèi)任取一點(diǎn)O,作,則叫做向量與夾角. 當(dāng)與夾角是90°時(shí),
6、與垂直,記作.正交分解:依據(jù)平面向量的基本定理,對平面上的任意向量,均可分解為不共線的兩個(gè)向量與,使. 若把一個(gè)向量分解為兩個(gè)互相垂直的向量,叫做把向量正交分解.坐標(biāo)表示:在平面直角坐標(biāo)系中,分別取與x軸、y軸方向相同的兩個(gè)單位向量作為基底,則對于平面內(nèi)的一個(gè)向量,有且只有一對實(shí)數(shù)x、y,使得. 即平面內(nèi)的任意向量都可由x、y唯一確定,把有序數(shù)對(x,y)叫做向量的坐標(biāo),記作,式子叫做向量的坐標(biāo)表示.6. 平面向量的數(shù)量積運(yùn)算:,其中是與的夾角,叫做向量在方向上的投影. 的幾何意義:數(shù)量等于的長度與在的方向上的投影的乘積. 數(shù)量積運(yùn)算滿足:交換律;數(shù)乘結(jié)合律;分配律. 把記作,有性質(zhì),從而.
7、力作功: 一個(gè)物體在力的作用下產(chǎn)生位移,那么力所作的功,其中是與的夾角,從而.7. 平面向量的坐標(biāo)運(yùn)算:設(shè),則加減法:,;數(shù)乘:;向量積:;模:;距離:;夾角:.8. 向量共線:設(shè),其中,若共線,當(dāng)且僅當(dāng)存在實(shí)數(shù),使,即. 由此可證明平行問題、三點(diǎn)共線等.9. 向量垂直:對于平面內(nèi)任意兩個(gè)非零向量,. 設(shè),則. 由此可證明一些垂直問題.10. 線段定比分點(diǎn)的坐標(biāo):已知點(diǎn),點(diǎn)是線段上的一個(gè)分點(diǎn),且,則有,即,由此得到. 若,得到線段中點(diǎn)坐標(biāo)公式.11.向量知識(shí)與平面幾何的了解:平面幾何問題向 量 方 法求線段AB的長度轉(zhuǎn)化為求向量的長度:.求兩條線段的夾角由數(shù)量積求夾角或.證明兩條直線垂直轉(zhuǎn)化為兩個(gè)非零向量的數(shù)量積為0,即.證明兩條直線平行轉(zhuǎn)化為證明兩個(gè)非零向量共線,即12. 向量法解決平面幾何問題三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 倉儲(chǔ)智能化系統(tǒng)運(yùn)維與數(shù)據(jù)安全保障協(xié)議
- 圖錄資料補(bǔ)充及維護(hù)服務(wù)協(xié)議
- 全渠道加盟商合作共贏協(xié)議
- 智能家居環(huán)境控制系統(tǒng)安裝與定期檢修合同
- 智能家居系統(tǒng)研發(fā)、生產(chǎn)、安裝及培訓(xùn)合同
- 直播帶貨渠道補(bǔ)充服務(wù)合同
- 影視后期制作與技術(shù)支持與維護(hù)合同
- 銷售管理人員分析
- 森林防火安全教育
- 剖腹產(chǎn)產(chǎn)期護(hù)理
- 重慶地理會(huì)考試卷題及答案
- 福建省三明市2025年普通高中高三畢業(yè)班五月質(zhì)量檢測地理試卷及答案(三明四檢)
- 人教版(2024)七年級(jí)下冊英語Unit 5 Here and Now 教案
- cng安全管理制度
- 消渴腎病的中醫(yī)護(hù)理方案
- 農(nóng)行反洗錢與制裁合規(guī)知識(shí)競賽考試題庫大全-上下
- DGTJ08-202-2020鉆孔灌注樁施工規(guī)程 上海市
- 拆遷協(xié)議中的貸款合同
- 河北省中原名校2025屆高考化學(xué)押題試卷含解析
- 小學(xué)學(xué)生體質(zhì)健康監(jiān)測管理制度
- 輕鋼龍骨隔墻施工方案
評(píng)論
0/150
提交評(píng)論