![新人教版七年級上冊數學第4章_圖形認識初步全章教案[1]_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/24/e0b65c73-bd5b-4b47-b676-87252b982eaf/e0b65c73-bd5b-4b47-b676-87252b982eaf1.gif)
![新人教版七年級上冊數學第4章_圖形認識初步全章教案[1]_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/24/e0b65c73-bd5b-4b47-b676-87252b982eaf/e0b65c73-bd5b-4b47-b676-87252b982eaf2.gif)
![新人教版七年級上冊數學第4章_圖形認識初步全章教案[1]_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/24/e0b65c73-bd5b-4b47-b676-87252b982eaf/e0b65c73-bd5b-4b47-b676-87252b982eaf3.gif)
![新人教版七年級上冊數學第4章_圖形認識初步全章教案[1]_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/24/e0b65c73-bd5b-4b47-b676-87252b982eaf/e0b65c73-bd5b-4b47-b676-87252b982eaf4.gif)
![新人教版七年級上冊數學第4章_圖形認識初步全章教案[1]_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/24/e0b65c73-bd5b-4b47-b676-87252b982eaf/e0b65c73-bd5b-4b47-b676-87252b982eaf5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第四章 圖形認識初步4.1 多姿多彩的圖形§ 4.1.1 幾何圖形一、教學目標1、知識與技能(1)初步了解立體圖形和平面圖形的概念.(2)能從具體物體中抽象出長方體、正方體、球、圓錐、棱錐、棱柱等立體圖形;能舉出類似長方體、正方體、球、圓錐、棱錐、棱柱的物體實體.2、過程與方法(1)過程:在探索實物與立體圖形關系的活動過程中,對具體圖形進行概括,發展幾何直覺.(2)方法:能從具體事物中抽象出幾何圖形,并用幾何圖形描述一些現實中的物體.3、情感、態度、價值觀(1). 形成主動探究的意識,豐富學生數學活動的成功體驗,激發學生對幾何圖形的好奇心,發展學生的審美情趣.二、教學重點、難點:教學
2、重點:常見幾何體的識別教學難點:從實物中抽象幾何圖形.三、教學過程1. 創設情境,導入新課.(1)同學們,不知你們有沒有仔細地觀察過我們生活的周圍,如果你認真觀察的話,你會發現我們生活在一個多姿多彩的圖形世界里. 引導學生觀察08年奧運村模型圖, 你能從中找到一些你熟悉的圖形嗎?(2)用幻燈片展示一些實物圖片并引導學生觀察. 從城市宏偉的建筑到江南水鄉的小橋流水,從高科技產品到日常小玩意,從四通八達的立交橋到街頭巷尾的交通標志,從古老的剪紙藝術到現代的雕塑,從自然界形態各異的動物到北京的申奧標志圖形的世界是豐富多彩的.2直觀感知,識別圖形(1)對于各種各樣的物體, 數學中關注是它們的形狀、大小
3、和位置.(2)展示一個長方體教具,讓學生分別從整體和局部抽象出幾何圖形. 觀察長方體教具的外形,從整體上看,它的形狀是長方體,看不同的側 面,得到的是正方形或長方形,只看棱、頂點等局部,得到的是線段、點.(3)觀察其他的實物教具(或圖片)讓學生從中抽象出圓柱,球,圓等圖形. (4)引導學生得出幾何圖形、立體圖形、平面圖形的概念.我們把從實物中抽象出的各種圖形統稱為幾何圖形. 比如長方體,長方形 ,圓柱,線段,點,三角形,四邊形等. 幾何圖形是數學研究的主要對象之一. 有些幾何體的各部分不都在同一平面內,它們是立體圖形. 如長方體,立方體等.有些幾何圖形和各部分都在同一平面內,它們是平面圖形.
4、如線段,角,長方形,圓等.3. 實踐探究.(1 引導學生觀察帳篷, 金字塔的圖片, 從面抽象出棱柱, 棱錐. (2你能說說圓柱與棱柱, 圓錐與棱錐的區別嗎?(3你能再舉一些圓柱、棱柱、圓錐、棱錐的實例嗎?(4)下圖中實物的形狀對應哪些立體圖形? 把相應的實物與圖形用線連起來 4. 小結這節課你有什么收獲?5. 作業設計課本第123頁習題4.1第1、2題;第125頁習題4.1第7、8題。教學后記:§ 4.1.1 幾何圖形(二)一、教學目標知識與技能1能識別簡單幾何體的三種視圖.2會畫簡單立體圖形及其它們的簡單組合的三種視圖.3進一步認識立體圖形與平面圖形之間的關系.4引導學生把所學的數
5、學知識應用到生活中去,解決身邊的數學問題. 過程與方法在從不同方向看立體圖形的活動過程中,體驗立體圖形與平面圖形之間的相互轉化,從而建立空間觀念,發展幾何直覺.情感、態度、價值觀1通過活動,形成學生主動探究的意識,豐富學生數學活動的成功經驗,激發學生對幾何圖形的好奇心和對學習的自信心.2從實物出發,讓學生感受到圖形世界的無處不在,提高學生學習數學的熱情.二、重點與難點重點:1. 在觀察的過程中初步體會從不同方向觀察同一物體可能看到不同的結果.2. 能識別簡單物體的三視圖,會畫簡單立體圖形及其它們組合的三種視圖. 難點:1. 在面和體的轉換中豐富幾何直覺和數學活動經驗,發展空間觀念2. 能識別簡
6、單物體的三視圖,會畫簡單立體圖形及其它們組合的三種視圖.三、教學過程1. 創設情景,引入新課(1)請欣賞漫畫并思考 :為什么會出現爭執? (2) “橫看成嶺側成峰,遠近高低各不同. 不識廬山真面目,只緣身在此山中. ”這是宋代詩人蘇軾的著名詩句(題西林壁). 你能說出“橫看成嶺側成峰”中蘊含的數學道理嗎?2. 新課學習(1)不同角度看直棱柱、圓柱、圓錐、球讓學生分別從正面、左面、右面,上面等各個角度觀察:正方體木塊,長方體木塊,三棱鏡,六角扳手,易拉罐,排球, 圓錐,由淺入深,體會從不同方向看直棱柱、圓柱、圓錐、球等立體圖形得到的平面圖形,難點是在體會曲面的透視圖,讓學生交流、體驗,集體作出小
7、結. (可以給出三個視圖的名稱)(2)猜一猜,看一看. 左看右看上看下看一個物體都是圓?(猜一物體. 什么物體左看右看上看下看都是正方形?若是長方形呢?(各猜一物體 . 桌上放著一個圓錐和圓柱,請說出下面三幅圖是分別從哪個方向看到的. (3 分別從不同方向觀察以下實物(茶葉盒、魔方、書、乒乓球等 ,你看到了什么圖形?你能一一畫下來嗎7(畫出示意圖即可 (4)(從不同角度看簡單的組合圖形,由少數組合逐步加多)如下圖,畫出下列幾何體分別從正面、左面,上面看,得到的平面圖形. (學生獨立思考、合作交流,最后從模型上得到驗證) 3. 實踐與探究(1) 上圖是一個由9個正方體組成的立體圖形,分別從正面、
8、左面、上面觀察這個圖形,各能得到什么圖形?(2再試一試,畫出它的三視圖 (3怎樣畫得又快又準?(4)用6個相同的小方塊搭成一個幾何體, 它的俯視圖如圖所示. 則一共有幾種不同形狀的搭法(你可以用實物模型動手試一試?4. 參考練習()圖,桌上放著一個球和一個圓柱,下面a 、b 、c 、d 、e 這五幅圖分別是從什么方向看到的? ()一個正方體中,截去一個小正方體的立體圖如圖所示,從左面觀察這個圖形,得到的平面圖形是 ( ) (3)一個由8個正方體組成的立體圖形,從正面和上面觀察這個圖形時,得到的平面圖形如圖所示,那么從左面觀察這個圖形時,得到的平面圖形可能是 ( ) (4)如圖分別是某立體圖形三
9、視圖,請根據圖說出立體圖形的名稱正視圖俯視圖 左視圖 正視圖俯視圖 右視圖 5. 小結(1你對本節內容有哪些認識?(2你有什么收獲? 有什么感想? 有什么困惑?6. 作業設計課本第120頁練習1 ,課本第124頁習題4.1第3、4題教學后記:蚊子 蚊子 壁虎 § 4.1.1 幾何圖形(三)一、教學目標知識與技能了解直棱柱、圓錐等簡單立體圖形的側面展開圖。能根據展開圖初步判斷和制作立體模型。進一步認識立體圖形與平面圖形之間的關系。通過描述展開圖,發展學生運用幾何語言表述問題的能力。過程與方法在平面圖形和立體圖形互相轉化的過程中,初步建立空間觀念,發展幾何直覺。通過動手觀察、操作、類比、
10、推斷等數學活動,積累數學活動經驗,感受數學思考過程的條理性,發展形象思維。通過展開與折疊的活動,體會數學的應用價值。情感、態度、價值觀通過學生之間的交流活動,培養主動與他人合作交流的意識。通過探討現實生活中的實物制作,提高學生學習熱情。二、重點與難點重點:直棱柱的展開圖。難點:根據展開圖判斷和制作立體模型。三、教學過程1. 創設情境,導入課題小壁虎的難題:如圖:一只圓桶的下方有一只壁虎,上方有一只蚊子,壁虎要想盡快吃到蚊子,應該走哪條路徑?學生各抒己見,提出路線方案。 教師總結:若在平面上,壁虎只要沿直線爬過去就可以了。而在圓桶上,直線不太好找,那么把圓柱側面展開,就可找出答案。 如圖所示:圓
11、柱側面展開后是矩形,壁虎只要沿圖中直線爬向蚊子即可。若蚊子和壁虎在其他幾何體上,如棱錐,正方體 它們展開后是什么圖形呢?今天我們就來討論它們的展開圖。2、新課探究:(1)正方體的表面展開圖教師先演示正方體的展開過程,提醒沿著棱展開,且展開圖必須是一個完整的圖形。然后讓學生拿出學具正方體紙盒(或是課前準備好的正方體紙盒,或現成的正方體包裝盒)進行動手操作,得到正方體展開圖。. 教師再拿出如下圖所示的兩個紙片,提問:能否經過折疊圍成一個正方體?若不能,如何改變其形狀就能圍成一個正方體?(要求學生仔細觀察,思考,討論,并動手操作驗證猜想) (2)其他直棱柱的表面展開圖學生從其他直棱柱中任選一種,得到
12、它的展開圖,相互交流。教師指導總結。 (特別是圓柱體展開時,體會怎樣展開會得到側面是一個長方形)(3) 讓學生分組研究觀察三棱錐的展開圖。歸納:從剛才的實踐過程中,大家可能已經感受到,同一個幾何體,按不同的方式展開,得到的展開圖也不同。(4)你能想象出下面的平面圖形可以折疊成什么多面體?動手做做看。 提問:通過實踐,說說以上平面圖形疊成什么多面體?上面的圖1及圖3可以折疊成正三棱錐,所以它們都是正三棱錐的表面展開圖。圖2不可以折疊成正三棱錐,所以它不是正三棱錐的表面展開圖。歸納:一些平面圖形也可以圍成立體圖形。(5)提問:是所有的立體圖形都能展開成平面圖形嗎?老師引導得出:是由一些平面圖形圍成
13、的,將它們的表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖。3. 小結(1)一些立體圖形是由平面圖形圍成的立體圖形,沿著它們的一些棱將它剪開,可以把多面體展開成一個平面圖形體現了立體圖形與平面圖形之間的相互聯系。(2)對于一些立體圖形的問題,常把它們轉化為平面圖形來研究和處理。4. 作業設計(2)課本第125-126頁習題4.1第11、12、14題教學后記:§ 4.1.2 點、線、面、體一、教學目標:知識技能:1、進一步認識點、線、面、體的概念.2、理解點、線、面、體之間的關系.過程與方法通過學習點、線、面、體之間的關系,進一步發展學生抽象概括能力和形象思維
14、的能力.情感、態度、價值觀通過聯系現實世界中各種常見的幾何體及情景,讓學生認識數學與現實生活的密切聯系.二、教學重、難點重點:點、線、面、體之間的關系.難點:體會點動成線、線動成面、面動成體三、教學過程:1. 問題情境問題1(1)舉出一些你所熟悉的立體圖形.(2) 你知道這些體是由什么圍成的嗎?它們有什么不同嗎?面與面相交的地方形成了什么?它們有什么不同呢?線與線相交之處又得到了什么?(3)舉出生活實際中分別給體、面、線、點的形象的例子學生先獨立觀察、思考,然后再討論、交流得出以下結論:(1)體是由面圍成的. 面有兩種,平面和曲面.(2)面與面相交的地方形成了線,線有直的也有曲的.(3)線與線
15、相交的地方是點.教師對以上結論加以總結、完善得出點、線、面、體之間的關系. 即“體由面組成,面與面相交成線,線與線相交成點”.教師鼓勵學生聯想身邊熟悉的情景,盡可能多的舉出例子,并把課前準備的掛圖和物品等展示出來和學生交流.問題2(學生動手操作、思考并回答問題)(1)筆尖可以看作是一個點,這個點在紙上運動時,形成了什么? 通過上述運動你得出了什么結論? 你能舉出生活中的一些實例進一步說明這一結論嗎?教師在學生回答問題的基礎上總結得到“點動成線”的結論.學生在組內討論、交流的基礎上,舉出更多實例. 如:螞蟻搬家;在一望無際的沙灘上;一個孤獨的旅行者留下的一排長長的足跡 (2)汽車雨刷可以看作是一
16、條線,它在檔風玻璃上運動時有什么現象?通過對上面現象的分析你得出了什么結論?你能舉出生活中的一些實例進一步說明這一結論嗎?教師讓學生拿筆或直尺當雨刷在紙上演示,啟發學生類比上一個問題. 并鼓勵學生用自己的語言說出發現的結論.學生通過仔細觀察圖片,動手實踐,回答問題. 得出“線動成面”的結論.學生經討論、交流后舉例. 如:夜晚街頭閃爍的霓虹燈、利用竹條編織的涼席,用掃帚掃地、用刷子刷油、鐘表盤上分針時針的運動 (3)長方形紙片繞它的一邊旋轉,形成了什么圖形?通過對上面現象的分析你得出了什么結論?你能再舉出一些例子進一步說明這一結論嗎?你能找出它們之間的對應關系嗎?教師演示旋轉過程,讓學生通過觀察
17、,大膽猜測,想象.學生在觀察、猜測、想象之后獨立思考得出結論,再通過動手實踐加以驗證;最后進行小組討論、交流,回答問題. 得出“面動成體”的結論.學生經小組交流,舉出例子. 如把三角尺繞其一邊旋轉形成幾何體、一摞壹元硬幣問題3(1)為什么在中國地圖上,北京只是一個點,而在北京市地圖上北京幾乎占了整個版面? 學生先獨立思考后討論、交流回答問題,同學們之間可以相互補充、糾正.(2)觀察下面的圖片,你有什么發現?構成幾何圖形的基本元素是什么? 學生觀察圖片. 表述觀點.教師參與學生的交流活動,總結出幾何圖形都是由點、線、面、體組成的,點是構成圖形的基本元素.2. 小結.本節是從實際物體中抽象出幾何圖
18、形、立體圖形、平面圖形,又進一步抽象出體、面、線、點等基本元素,研究了它們之間的關系之后,又由這些基本元素得到豐富多彩的圖形世界.3. 布置作業.課后收集能反映點、線、面、體之間關系的資料、圖片及實物模型. 教學后記:§ 4.2 直線、射線、線段(一)教學目標知識與技能1、在現實情境中理解線段、直線、射線等簡單的平面圖形。2、理解兩點確定一條直線的事實。3、掌握直線、射線、線段的表示方法。4、理解直線、射線、線段的聯系和區別過程與方法1、通過學習直線、射線、線段的表示方法,使學生建立初步的符號感。2、通過對直線、射線、線段性質的研究,體會它所在解決實際問題中的作用,并能用它們解釋生活
19、中的一些現象。3、運用對比法、歸納法總結差異。情感、態度、價值觀通過對直線、射線、線段的性質的探究,使學生初步認識到數學與現實生活的密切聯系,感受數學的嚴謹性以及數學結論的確性。教學重難點重點:線段、射線與直線的概念及表示方法,兩點確定一條直線的性質。 難點:直線性質的發現,理解及應用及不同幾何語言的相互轉化。教學過程:一、復習引入:(1)點、線、面、體是構成幾何圖形的元素。從運動的觀點來看,可以說是點動成線,線動成面,面動成體。因此對幾何圖形的學習我們也可以按點、線、面、體的順序展開。(2)點是用來表示物體的位置的。點無大小之分。如何表一個點呢?圖形語言 文字語言二、探究新知:(1)在以前的
20、學習中我們學過哪些線?直線、射線、線段(2)生活中有哪些關于直線、射線、線段的形象,試舉例說明?(3)請分別畫出一條直線、射線、線段?學生畫圖,教師在黑板上示范,給出規范的表示方法.(教師關注:學生是否注意到用兩個大寫字母表示射線時,端點的字母寫在前面)(4)如何表示一條直線、射線、線段?圖形語言 文字語言(教師關注:學生是否注意到直線、射線、線段都有兩種表示方法. )三、討論交流:(1)你能結合自已所畫圖形尋找出直線、射線、線段的特征嗎?你能發現它們之間的區別與聯系嗎?直線、射線、線段的聯系與區別: (3)從一條直線上如何得到射線和線段?歸納:線段和射線都是直線的一部分4、動手做一做:(1)
21、過一點可畫出多少條直線?讓學生動手畫,結合圖形描述點和直線的位置關系(2)過兩點可畫出多少條直線?(3)在墻上過定一個板條,你認為至少要幾顆釘子?引導學生得出直線的性質定理:過兩點有且只有一條直線。(兩點確定一條直線)(4)在日常生活和生產中常常用到這個基本事實。如建筑工人在砌墻時,經常在兩個墻腳的位置分別插一根木樁,然后拉直一條直的參照線。你能舉出類似的例子嗎?引申:過三點可以畫出幾條直線?引導學生按三個點的相互位置分類討論。5、課堂練習:按下列語句分別畫也相應的圖:(1)直線EF 經過點C ;(2)點A 在直線m 外; (3)經過點O 的三條線段a 、b 、c ;(4)線段AB 、CD 相
22、交于點B.6、小結:這節課我們學習了哪些知識?(結合具體的圖形,突出圖形語言和文字語言的轉化)思考:1. 一條直線上有三個點,它們能組成多少條線段?四個點呢?試想有n 個點,則能組成多少條線段?2.一條直線把平面分成2部分,2條直線最多把平面分成4部分,那么3條直線把平面最多分成幾個部分?4條呢?n 條呢?7、作業設計課本132頁習題4.2第2、3、4題。選做134頁習題4.2第11題。教學后記:A B§ 4.2 直線、射線、線段(二)教學目標知識與技能1會畫一條線段等于已知線段.2結合圖形認識線段間的數量關系,學會比較線段的大小.3利用豐富的活動情景,讓學生體驗到兩點之間線段最短的
23、性質,并能初步應用.4知道兩點之間的距離和線段中點的含義.過程與方法通過學習線段大小比較,學習線段中點、三等分點、四等分點等定義,使學生建立初步的符號感.通過對兩點之間線段最短的性質的研究,體會它們在解決實際問題中的作用,并能用它們解釋生活中的一些現象.情感態度價值觀培養學生合作交流的意識和探索精神,感受數學的嚴謹性以用數學結論的確定性.教學重點:線段大小的比較,線段的性質教學難點:線段中點、三等分點、四等分點的表示方法及應用.教學過程:一、引入二、畫一條線段等于已知線段如何畫一條線段等于已知線段?教師對學生的回答進行歸納總結. 指出畫一條線段等于已知線段有兩種方法:(1)如圖,作射線AC ,
24、在射線AC 上截取AB=a.(教師邊說邊示范尺規作圖)(2)先量出線段a 的長度,再畫一條等于這個長度的線段.三、比較線段的大小(1)怎樣比較兩位同字的身高?學生分組活動,討論、實踐、交流. 教師參與活動,傾聽學生的交流,指導學生完成任務,從而共同總結出兩種方法:度量法、疊合法.(2)怎樣比較兩條線段的大小?學生獨立思考和討論的基礎上,請學生把自已的方法進行演示、說明。教師對學生的回答進行規納總結. 指出比較兩條線段的大小有兩種方法.度量法:用刻度尺分別測量出它們的長度來比較;疊合法:把其中一條線段移到另一條線段上作比較. 在此基礎上教師給出線段大小的數量表示方法.(3)完成教科書第123頁練
25、習.學生獨立完成,教師加以指導. A B C四、等分線段1. 讓學生將一條繩子對折,使繩子的端點重合,你能說說你的感受嗎? 學生分組活動、討論、交流,教師深入小組參與活動,傾聽學生交流.2. 線段中點的表示方法.(1)結合圖形,引導學生理解給出線段中點的三種表示方法(由形到數) AM =BM ; AM =BM =AB 21 ; AB =2AM =2BM (2)結合圖形若給出相應數量關系也可得到的中點. (由數到形)3. 什么是線段的三等分點?四等分點?教師邊畫圖,邊給出表示方法.線段的中點只有一個,三等分點有兩個,四等分點有三個.五、兩點的距離問題:(1)教科書第130頁思考中的問題.教師引導
26、小組交流后得出結論“兩點的所有連線中,線段最短”簡單說成:“兩點之間,線段最短”.(2)你能舉出這條性質在生活中的一些應用嗎?(3)什么是兩點的距離?連接兩點間的線段的長度,叫做這兩點的距離.注意:兩點的距離不是線段,而是線段的長度.六、課堂小結學完這節課你有哪些收獲?學生自已總結,不全面的由其它學生補充完整七、作業設計課本133頁習題4.2第5、7、8題134頁習題4.2第9、10題。教學后記:§ 4.2 直線、射線、線段 (三)練習課教學目標:1. 復習鞏固直線、射線、線段的概念.2. 加強圖形語言和文字語言的相互轉化.3. 會運用線段中點的知識解決有關的實際問題教學重點:線段、
27、射線與直線的概念,兩點確定一條直線的性質;線段大小的比較,線段的性質。教學難點:理解及應用及不同幾何語言的相互轉化。教學過程:活動1. 如圖:已知點A 、B 、C 、D ,根據下列語句畫圖(1)畫直線AB ,AD(2)畫射線AC ,CB (3)連結CD ,BD活動2 如圖1-1,A ,B ,C ,D 為直線l 上的四個點 問:(1)圖中以C 為端點的射線有幾條?把它們分別表示出來;(2)圖中共有幾條射線?能夠用所給出的字母表示的有幾條?把它們分別表示出來.(3)圖中共有幾條線段?把它們分別表示出來.活動3 畫圖說明以下問題:(1過三點可以畫一條直線嗎?(2有A 、B 、C 三點, 過其中每兩個
28、點畫直線, 可以畫幾條直線?(3三條直線兩兩相交, 一共有幾個交點?活動4. 按下列語句畫出圖形:(1直線EF 經過點D, 點C 在不在直線EF 上;(2線段AB 、CD 相交于點B.(3P是直線a 外一點, 過點P 有一條線段b 與直線a 不相交.(4 P是直線a 外一點, 過點P 有一條直線b 與直線a 不相交.4. 兩條不同的直線, 要么有一個公共點, 要么沒有公共點, 不能有兩個公共點. 這是為什么? 畫圖說明.活動5 .如圖,點C 在線段AB 上,M 是AC 中點,N 是CB 中點 (1AC = 2cm,BC = 3cm,求MN 的長?(2AM = 1cm,BC = 3cm,求AB
29、的長?(3AB = 5cm,MC = 1cm,則NB 的長?探究:(1)如圖,點C 為線段AB 上任一點,M 是AC 中點,N 是CB 中點,且cm AC BC a +=,你能猜想M N 的長度嗎?寫出你的結論,請說明理由,并用一句簡潔的話來描述你發現的結論. (2)若C 在線段A B 的延長線上,且滿足cm A C B C b -=,M 是AC 中點,N 是CB 中點,你能猜想M N 的長度嗎?寫出你的結論,并說明理由.參考練習:一、填空:1. 一條直線有 個端點,一條射線有 個端點,一條線段有 個端點.2. 如圖 A、B 、C 分別是直線上的三點,要有兩個大寫字母表示這條直線,可以分別表示
30、為3. 如圖,E 、F 是線段BD 上兩點,圖中共有 條線段,它們分別是 4. 如圖, 點A 在直線m 上, 也可以說直線m 經過點A. 點B 、C 在直線外, 也可以說_.二、選擇題:1. 下列結論中正確的是( )2. 下列結論中不正確的是( )A. 直線AB 和直線BA 表示同一條直線B. 射線AB 和射線BA 表示同一條射線C. 線段AB 和線段BA 表示同一條線段D. 直線可以表示為直線a3. 如圖,PQ 為直線,MN 為線段,OH 為射線,則圖中兩線段相交的是( )A BCm · · 4. 如圖,直線AC 和BD 相交于點O ,下面語句正確的是( ) A. 射線O
31、A 與射線OC 是同一條射線B. 射線OA 與射線OB 是同一條射線C. 射線BO 與射線BD 是同一條射線D. 射線BD 與射線OD 是同一條射線15如圖,下列結論中不正確的是( )B A OA 直線AB 與直線BA 是同一條直線 B 射線OA 與射線OB 是同一條射線C 射線OA 與射線AB 是同一條射線 D 線段AB 與線段BA 是同一條線段三、計算題:1. 已知線段AB ,延長AB 到C ,使AB = 3BC,D 是AC 中點,DC = 2cm,求AB 的長2. 把線段AB 延長到C ,使BC = 2AB,再延長BA 到D ,使AD = 3AB,求DC 與AB 的關系,DC 與BC ,
32、BD 與AB ,BD 與BC 的關系.(1數軸上A,B 兩點所表示的數分別是5,1,那么線段AB 的長是 個單位長度,線段AB 的中點所表示的數是(2已知線段AC 和BC 在一條直線上,如果AC =5.6 cm,BC=2.4 cm,求線段AC 和BC 的中點之間的距離§ 4.3.1 角(一)教學目標1. 角的定義和相關概念,用運動的觀點理解角、直角、平角、周角,掌握角的表示方法;2. 能進行度與度分秒之間的轉化,能夠作一個角等于已知角3. 使學生在學習知識的過程中體會研究幾何圖形的方法和步驟教學重點:角的概念及表示方法.教學難點:角的準確度量及度、分、秒的換算.教學過程(一)情景導入
33、1. 、觀賞畫面(找掛圖)和實物,請在畫面中的共同點角. (二)探求新知: 1、請舉出生活中角的實例.2、歸納、總結角的概念:角由兩條具有公共端點的射線組成,兩條射線的公共端點叫這個角的頂點,這兩條射線叫做角的邊.提醒:平時畫角時,只能將邊畫成兩條線段,即用角的一部分來研究角3、小學曾接觸到角,我們已經有了初步的認識,那么角是如何來表示的?角的大小用什么表示呢?用什么工具去度量呢?它的單位是什么呢?4、結合圖形講解角的表示方法(四種方法)O B A OO(1)用三個大寫字母:表示角的頂點的字母寫在中間AOB ;(2)用數字:1,2;(3)用希臘字母:,;(4)用一個大寫字母:表示角的頂點的字母
34、O 5. 鐘表上的時針與分針是如何構成角的?從中你能得到什么啟發?學生活動設計:觀測鐘表,發現角是由線旋轉而成的,從而可以從運動的觀點定義角角的第二定義:角也可以看作由一條射線繞著它的端點旋轉而成的圖形.O B A說明角的始邊、終邊、角的內部、角的外部、直角、平角、周角等概念,進而得到兩種特殊的角:平角和周角平角:當射線OB 繞O 點旋轉,當終止位置OA 與起始位置OB 在一條直線上時,形成平角;周角:當射線OB 繞O 點旋轉,當終止位置OA 與起始位置OB 重合時,形成周角終邊始邊A O )平角 周角6、角的度量(1)我們常用量角器度量一個角的度數,度、分、秒是常用的角的度量單位,把一個周角
35、分成360份,一份就是1°,把1°分成60份,一份就是1,把1分成60份,一份就是1,以度分秒為單位的角的度量制就是角度制,從角度制不難發現,角的度數在進行運算時,是60進制的(2)填空:1周角= 0 1平角= 010= 1= (三)實踐與應用例 1 如右圖:在AOB 的內部有兩條射線OC ,OD ,請問圖中有幾個角?(小于平角的角)例 2 如圖:用另一種方法來表示角:(1)表示為 (2)FCG 表示為(3)r 表示為 (4)1表示為( 5)BDE 表示為例 3 (1)把3.620化為度、分、秒. (2)把5002345化成度.例4 一天24小時中,時鐘的時針和分針共組成多
36、少次平角?多少次周角?(四)小結與收獲1. 角的兩種定義、2.四種表示方法;3. 度分秒的轉化、角度制(五)作業設計第7題。教學后記:§ 4.3.1 角(二)教學目標 知識技能:(1)會正確使用量角器測量一個角的度數.(2)會用一副三角板,畫出150、300、450、600、750、900、1050、1200、等特殊角.(3)會用量角器畫一個角等于已知角. (4)掌握角的和、差、倍、分的計算. 過程與方法:(1)通過實際操作,培養學生的動手和計算能力. (2)討論、研究、探索、歸納法 情感、態度、價值觀:培養學生的求知欲和學習數學的積極性. 教學重難點重點:畫一個角等于已知角和角的計
37、算. 難點:角的和、差、倍、分的計算 教學過程(一)師生共同探求,解決如下問題1、量角器的使用方法. (測量一個已知的度數;畫出個已知其度數的角) 2、用一副三角板畫特殊角. 3、畫一個角等于已知角.4、如問進行角度的有關運算. (二)例題講解例 1 計算(1)1800 -(78036- 25027) (2)18015×6 (3)13010÷4 例 2(1)若時針由2點30分起到2點55分,問時針、分針各轉過多少度數? (2)鐘表上2時15分,時針與分針所成角小于900的角的度數是多少? 例 3 已知M ,如圖,畫AOB ,使AOB 的度數等于M 的度數. 例 4 如圖1:
38、2:3=1:2:3,4=600 ,試求1、2、3的度數.(三)課堂活動,強化訓練填空題:1、計算并填空:(1)23045+ 24026= (2)55012- 16037= (3)5024× 3= (4)25030÷3=2、已知=2705545,那么3= . 1/3= .3、由2點整到3點30分,時鐘的時針轉了 度.選擇題:1、如果=2,r=2,則正確的是( ) A、=r B、=1/4r C、=4r D、r=1/42、若1=75024,2=75.30,3=75012,則( ) A、1=2 B、2=3 C、1=3 D、以上都不對3、8點30分,這一時刻,時針與分針的度數是( )
39、A、700 B、750 C、800 D、250解答題:1、在1點和2點之間, 時鐘的時針與分針在什么時刻成900角2、用一副三角板畫圖,畫一個角使這個角等于13503. 三個角的和為140度,第二個角為第一個角的3倍,第一個角比第一,第二個角的和還大20度,求這三個角的度數.(四)拓展應用任意畫一個三角形,用量角器量出三個角的大小,并求出這三個角的和;多畫幾個試試,看看它的結果怎樣?你有什么猜想?(五)小結:師生共同歸納本節課所學的內容角的和、差、倍、分的計算方法(六)作業設計1. 課本第143頁習題4.3第1、2、3題。2. 課本第146頁習題4.3第14題。 教學后記:§ 4.3
40、.2角的比較和運算(一)教學目標 知識與技能會用兩種方法比較兩角的大小,知道兩角的和、差的意義,了解角平分線的意義,并能用肯定語言表示. 過程與方法觀察、操作、合作交際,畫圖、比較、歸納 情感、態度、價值觀能通過角的比較等體驗數、符號和圖形是描述現實世界的重要手段 教學重難點重點:角的大小的比較方法 難點:角的平分線的表示方法及其應用 教學過程:一、情景導入我們前面已經學習了怎樣比較兩條線段的長短,那么,我們怎樣比較兩個角的大小呢?二、探求新知:1. 與線段的比較類似,我們也有兩種方法來比較角的大小,一種方法為度量法:可以用量角器量出角的度數,然后比較它們的大小,另一種方法為疊合法:即把他們疊
41、合在一起比較大小.(1)疊合法比較兩角大小時,頂點必須重合,一邊必須重合,另一邊落在其余一邊的同旁.教師通過活動演示三種情況:DEF =ABC ,DEF ABC ,DEF ABC ,如圖所示ED CBAEDCBAEDCBA演示:移動DEF ,使其頂點E 與ABC 的頂點B 重合,一邊ED 和BA 重合,出現以下三種情況,如圖所示:EDC B A FED CB AFEDCB ADEF =ABC DEF ABC DEF ABC學生活動觀察教師演示后,同桌也可以利用兩副三角板演示以上過程,幫助理解比較兩角的大小,回答教師提出的問題EF 與BC 重合,DEF 等于ABC ,記作DEF =ABC EF
42、落在ABC 的內部,DEF 小于ABC ,記作DEF ABC EF 落在ABC 的外部,DEF 大于ABC ,記作DEF ABC 強調角的大小只與開口大小有關,與邊的長短無關,以及角的符號與小于號、大于號書寫時的區別(2測量法(測量前教師可提問使用量角器應注意的問題即三點:對中;重合;讀數角大度數大,角小度數小學生活動:請同學們同桌分別畫兩個角,然后交換用量角器測量其度數,比較它們的大小2. 如圖所示:同學們能在上圖中找到幾個角?它們這間有何關系呢? 我們可以容易看出,AOC 是AOB 與BOC 的和,記作AOC=AOB+BOC , 而AOB 是AOC 與BOC 的差,記作AOB=AOC-BO
43、C , 類似我們還有:AOC-AOB=BOC 3. 如圖所示,如果AOB=BOC ,則AOC= AOB +BOC=2AOB =2BOC , 即AOB=BOC=12AOC 如這種從一個角的頂點出發,把這個角分成相等的兩角的射線,叫做這個角的平分線,類似地還有角的三等分線等.COBA通過對角平分線的理解,可以得到如下數量關系: 若OC 平分AOB ,則(1)12; (2)1221AOB ;(3)AOB 2122反之結合上圖如果角之間滿足上面的數量關系也可說明OC 是AOB 的平分線.4. 如何作一個角的平分線?你能想到什么方法?方法1度量法;方法2折紙法對折角始角的兩邊重合,折痕就是角平分線三、例
44、題講解 例1 如圖:AOB 是哪兩個角的和?DOC 是哪兩個角的和?若AOB=COD ,則還有哪兩個角相等?例2 如圖: AOB是一條直線,AOC=900,DOE=900, 寫出AOD 、COD 、AOC 、AOB 、BOD 中某些角 之間的兩個等量關系. 例3 已知:一條射線OA ,若從點O 再引兩條射線OB 、OC ,使AOB=600,BOC=200,求AOC 的度數?例4 如圖:已知O 為直線AB 上一點,AOC 的平分線OM ,BOC 的平分線為ON ,求MON 的度數? 例5 如圖所示,OM 為AOB 的平分線,射線OC 在BOM 內,ON 為BOC 的平分線,已知AOC=800,求
45、MON ? 四、小結:這節課你學到了什么?師生共同歸納本節課所學的內容通過學習,我們知道了角的比較方法有兩種:度量法和疊合法,并且通過自己的動手實驗,學會了用三角尺畫出一些特殊的角和用折紙方法折出一個角的平分線,同時明白了一個道理:到想真正掌握知識,就必須在學習過程中注意觀察,勤于操作,積極思考,主動交流,善于總結五、作業設計1. 課本第143頁習題4。3第2、3、4、5、6題。 2. 第144-145頁習題4。3第10、11、15題。 教學后記:§ 4.3.3角的比較和運算(二) 余角和補角教學目標1. 了解余角和補角的定義和性質,并能熟練應用 2. 掌握圖形語言和文字語言的轉化,
46、3. 通過聯系實際,讓學生在數學活動中發展合作交流的意識,培養數形結合的思想教學重點:互余、互補等概念和性質教學難點:理解互余、互補等概念并熟練應用 教學過程: 一、情景導入1. 用量角器量出圖中的兩個角的度數,并求出這兩個角的和. 2. 說出一副三角尺中各個角的度數.一幅三角板中,每一塊都有一個角是900,且另外兩角為300、600和450,450那么它們兩者之間作何關系呢? 二、探求新知1. 我們可以看出,在一幅三角板中,除了一個900,我們都有300+600=900,而450+450=900。因此我們規定如果兩個有的和等于900(直角),我們就說這兩個角互為余角,即其中一個角是另一個角的
47、余角.如:300、600是互為余角(簡稱互余,300是600的余角,600也是300的余角。 類似地如果兩個角的和等于1800(平角),就說這兩個角互為補角(簡稱互補),其中的一個角是另一個角的補角.2. 互為補角和互為余角的角主要反映角的數量關系, 而不是角的位置關系. 3. 一個角是35039,求它的余角和補角? (獨立完成,個別回答,學生點評)4 如圖:1與2互補,3與4互補,如果2=3,則1與4相等嗎?為什么? 由上例我們可以得出結論: 等角(或同角 的補角相等 類似地,我們還有 等角(或同角 的余角相等 三、實踐與應用 例1 如圖:OC 是AO B 的平分線,D O E 是直角,圖中
48、互余的角有幾對,互補的角有幾對?把它們寫出來.例2已知一個角的余角比這個角的補角的一半還小120,求這個角余角和補角的度數?(可運用方程知識求解例3 填表后思考,并回答問題: 練習:1. 已知一個角的補角是這個角的余角的3倍,求這個角。 2. 課本第141頁練習 四、小結這節課,使我感受最深的是 這節課,我感到最困難的是 這節課,我學會了這節課,我發現生活中 這節課,我想我將學生自己總結,可在班上或同桌之間交流 五、作業設計課本第144頁習題4.3第7、8題,第13題。 參考練習2.如圖,OC 是平角AOB 的平分線,OD 、OE 分別是AOC 和BOC 的平分線,圖中和COD 互余的角有(
49、)個.D C EA O B3. 如圖,AOC=BOD=900,AOB=620,求COD 的度數. D C B O A 教學后記:§ 4.3.3 角的比較和運算(三) 方位角教學目標: 知識與能力能正確運用角度表示方向,并能熟練運算和角有關的問題 過程與方法能通過實際操作,體會方位角在是實際生活中的應用,培養學生的抽象思維. 情感、態度、價值觀能積極參與數學學習活動,培養學生對數學的好奇心和求知欲 教學重難點:重點:方位角的表示方法 難點:方位角的準確表示 教學過程一、情景導入1. 海上,緝私艇發現離它500海里處停著一艘可疑船只(如圖),立即趕往檢查現請你確定緝私艇的航線,畫出示意圖
50、并用語言描述出來.A·可疑船B·緝私艇2. 實際生活中,在航行、測繪等工作以及生活中,我們經常會碰到上 述類似問題,即如何描述一個物體的方位。有一種角經常用于航空、航海,測繪中領航員常用地圖和羅盤進行這種角的測定,這就是方位角,方位角應用比較廣泛,什么是方位角呢?二、學習新知方位角其實就是表示方向的角,這種角以正北,正南方向為基準描述物體的方向,如“北偏東300”,“南偏西400”等,方位角不能以正東,正西為基準,如不能說成“東偏北600,西偏南500”等,但有時如北偏東450時,我們可以說成東北方向.三、實踐與應用例1 如圖:指出圖中射線OA 、OB 所表示的方向.例2
51、若燈塔位于船的北偏東300,那么船在燈塔的什么方位?(要讓學生畫出相應圖形,結合圖形來回答) (換成其它的方位角再回答然后找到規律)A B例3 如圖,貨輪O 在航行過程中發現燈塔A 在 它的南偏東600的方向上,同時在它北偏東600,南偏西100,西北方向上又分別發現了客輪B ,貨輪C 和海島D ,仿照表示燈塔方位的方法,畫出表示客輪B 、貨輪C 、海島D 方向的射線四、小結引導學生討論本節課所學知識以及需要注意的問題 五、作業設計課本第144頁習題4.3第9題,第12題。五、參考練習: 1. 請使用量角器、刻度尺畫出下列點的位置. (1)點A 在點O 的北偏東300的方向上,離點O 的距離為
52、3cm.(2)點B 在點O 的南偏西600的方向上,離點O 的距離為4cm.(3)點C 在點O 的西北方向上,同時在點B 的正北方向上.2. 如圖,若已知1+2=900,2+3=900,問1和3是什么關系?為什么?若2和4相等,則1和4要滿足什么關系?為什么?3. 如圖,O 是直線AB 上一點,AOB=FOD=900,OB 平分COD, 圖中與DOE 互余的角有哪些?與DOE 互補的角有哪些?教學后記:A B CA B DE O第四章圖形初步認識復習(一) 教學目標 知識與技能1使學生理解本章的知識結構,并通過本章的知識結構掌握本章全部知識; 2對線段、射線、直線、角的概念及它們之間的關系有進
53、一步的認識; 過程與方法經歷相關內容的歸納、總結,鞏固對圖形的直觀認識,了解圖形的分割和組合,探索學習空間與圖形的方法 情感、態度、價值觀在探索知識之間的相互聯系及應用的過程中,體驗推理的意義, 獲取學習的經驗 教學重難點重點是理解本章的知識結構,掌握本章的全部定理和公理; 難點是理解本章的數學思想方法 教學過程一、引導學生畫出本章的知識結構框圖二、具體知識點梳理 (一)多姿多彩的圖形立體圖形:棱柱、棱錐、圓柱、圓錐、球等. 1、幾何圖形 平面圖形:三角形、四邊形、圓等.主(正)視圖-從正面看2、幾何體的三視圖 側(左、右)視圖-從左(右)邊看 俯視圖-從上面看 (1)會判斷簡單物體(直棱柱、
54、圓柱、圓錐、球)的三視圖. (2)能根據三視圖描述基本幾何體或實物原型. 3、立體圖形的平面展開圖(1)同一個立體圖形按不同的方式展開,得到的平現圖形不一樣的. (2)了解直棱柱、圓柱、圓錐、的平面展開圖,能根據展開圖判斷和制作立體模型.4、點、線、面、體 (1)幾何圖形的組成點:線和線相交的地方是點,它是幾何圖形最基本的圖形. 線:面和面相交的地方是線,分為直線和曲線. 面:包圍著體的是面,分為平面和曲面. 體:幾何體也簡稱體.(2)點動成線,線動成面,面動成體. (二)直線、射線、線段 1、基本概念 2、直線的性質經過兩點有一條直線,并且只有一條直線.簡單地:兩點確定一條直線.3、畫一條線段等于已知線段(1)度量法 (2)用尺規作圖法 4、線段的大小比較方法(1)度量法 (2)疊合法5、線段的中點(二等分點)、三等分點、四等分點等定義:把一條線段平均分成兩條相等線段的點.圖形: A M B 符號:若點M 是線段AB 的中點,則AM=BM=12AB ,AB=2AM=2BM.6、線段的性質兩點的所有連線中,線段最短. 簡稱:兩點之間,線段最短. 7、兩點的距離連接兩點的線段長度
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環保電線采購合同協議
- 玉米收割收購合同協議
- 瓷磚廠設備安裝合同協議
- 申請房子貸款合同協議
- 瓷磚鑲貼合同協議書范本
- 物流運輸承包合同協議
- 電商競業合同和保密協議
- 理財產品購買合同協議
- 電梯安置房出售合同協議
- 電視活動招商合同協議
- 施工電梯租賃合同及安全協議
- 加油站臨時用電專項方案
- 青島農業大學畢業實習鑒定表
- MTBF測試驗證規范文件和報告
- 廣汽設計cs000t zn00z016車身密封條
- 2019第五版新版PFMEA 注塑實例
- (完整word版)計算機社團活動記錄
- 水池滿水試驗記錄表(自動計算)
- 2020年安徽省中考英語試題及參考答案與解析
- 八年級期末質量分析.ppt
- 強電(電氣照明)系統施工工藝流程(共18頁)
評論
0/150
提交評論