一元二次方程-韋達定理的應用及答案(共10頁)_第1頁
一元二次方程-韋達定理的應用及答案(共10頁)_第2頁
一元二次方程-韋達定理的應用及答案(共10頁)_第3頁
一元二次方程-韋達定理的應用及答案(共10頁)_第4頁
一元二次方程-韋達定理的應用及答案(共10頁)_第5頁
已閱讀5頁,還剩5頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、精選優質文檔-傾情為你奉上一元二次方程韋達定理的應用知識點:一元二次方程根的判別式 :當>0 時_方程_,當=0 時_方程有_ ,當<0 時_方程_ .韋達定理的應用:1.已知方程的一個根,求另一個根和未知系數2.求與已知方程的兩個根有關的代數式的值3.已知方程兩根滿足某種關系, 確定方程中字母系數的值4.已知兩數的和與積, 求這兩個數例 1.關于 x 的一元二次方程 .求證: 當 m>2 時,原方程永遠有兩個實數根.例 2.已知關于 x 的方程有兩個不相等的實數根.(1)求 k 的取值范圍;(2)是否存在實數 k, 使此方程的兩個實數根的倒數和等于 0?若存在, 求出 k

2、的值;若不存在, 說明理由.例 3.已知關于 x 的方程(1)若這個方程有實數根, 求 k 的取值范圍;(2)若這個方程有一個根為 1, 求 k 的值;例 4.已知關于 x 的一元二次方程(1)求證: 無論m取什么實數值, 這個方程總有兩個不相等的實數根。(2)若這個方程的兩個實數根 滿足, 求 m 的值。例 5.當 m 為何值時, 方程的兩根:(1) 均為正數; (2)均為負數; (3)一個正數, 一個負數; (4)一根為零; (5)互為倒數; (6)都大于 2.例 6.已知 a,b,c,是 ABC 的三邊長, 且關于 x 的方程 有兩個相等的實根,求證: 這個三角形是直角三角形。例 7.若

3、 n>0 ,關于 x 的方程有兩個相等的正的實數根, 求的值。課堂練習:1.下列一元二次方程中, 沒有實數根的是( )A. B. C. D. 2.已知是方程的兩個根,則的值是( )A.3 B.-3 C C. D .13.關于 x 的二次方程的一個根為 0, 則 m 的值為( )A.1 B.-3 C.1 或3 D.不等于 1 的實數4.方程 的兩根互為相反數, k 的值為( )A. k =5或 - 5 B. k =5 C. k = -5 D.以上都不對5.若方程的兩根之差的平方為 48, 則 m 的值為( )A.±8 B.8 C.-8 D.±46.已知關于 x 的方程,

4、 若有一個根為0, 則 m=_ , 這時方程的另一個根是 _; 若兩根之和為, 則 m=_ , 這時方程的兩個根為_7.已知方程 的一個根為, 可求得 p=_8.若是關于 x 的方程的一個根, 則另一個根為 _ , k = _ 。9.方程兩根為, 則。10.要使與是同類項, 則 n=_11.解下列方程:(1) (2) (3) 12.關于 x 的方程有實數根, 求 a 的取值范圍。13.設是方程的兩根, 利用根與系數關系求下列各式的值:(1) ; (2) ; (3) .14.關于 x 的方程, 試說明無論 a 為任何實數, 方程總有兩個不等實數根。15.已知關于 x 的方程 ,( 1) m 為何

5、值時, 方程有兩個相等的實數根?( 2) 是否存在實數 m, 使方程的兩根?若存在, 求出方程的根; 若不存在, 請說明理由。16.關于 x 一元二次方程 有兩個相等的實數根,其中 a, b, c 是三角形三邊的長,試判斷這個三角形的形狀。17.已知 RtABC 中, 兩直角邊長為方程的兩根, 且斜邊長為 13, 求的值.韋達定理的應用測試題日期:_月_日 滿分:_ 100 分 姓名:_ 得分:_1.關于 x 的方程 中, 如果 a<0, 那么根的情況是( )A.有兩個相等的實數根 B.有兩個不相等的實數根 C.沒有實數根 D.不能確定2.將方程的左邊變成平方的形式是( )A. B. C

6、. (x - 2) 2 =5 D. 3.設 是方程的兩根, 則 的值是( )A.15 B.12 C.6 D.34.已知 x 方程有兩個實數根, 則下列關于判別式的判斷正確的是( )A. < 0 B. C. D. 5.若關于 x 的一元二次方程有兩個不相等的實數根, 則 k 的取值范圍為( )A. k<1 B.k0 C. k>0 D. k<1 且 k06.關于 x 的方程有兩個不相等的實數根,a 的值為( )A. a<-2 B. - 2<a<2 C. a>-2 且 a 2 D. a -2 且 a 27.設 n 為方程的一個根, 則 等于_8.如果一

7、元二次方程 有兩個相等的實數根, 那么 k=_9.如果關于 x 的方程有兩個不相等的實數根, 那么 k 的取值范圍是_10.已知是方程的兩根, 則:(1) =_ ; (2) =_ ; (3) =_11.解下列一元二次方程:(1) (2) (3) 12.已知關于 x 的方程的一個根為 4, 求 m 值及此方程的另一個根。13.已知: 關于 x 的一元二次方程, 若 m0, 求證: 方程有兩個不相等的實數根。14.若規定兩數 a, b 通過“ ” 運算, 得到 4ab, 即 ab=4ab. 例如 26=4×2×6=48.(1) 求 35 的值; (2) 求 xx+2 x-24=

8、0 中 x 的值。15.求證: 不論 k 取什么實數, 方程一定有兩個不相等的實數根.一元二次方程韋達定理的應用參考答案知識點:一元二次方程根的判別式 :當>0 時方程有兩個不相等的實數根,當=0 時方程有有兩個相等的實數根,當<0 時方程沒有實數根.韋達定理的應用:1.已知方程的一個根,求另一個根和未知系數2.求與已知方程的兩個根有關的代數式的值3.已知方程兩根滿足某種關系, 確定方程中字母系數的值4.已知兩數的和與積, 求這兩個數例 1.關于 x 的一元二次方程 .求證: 當 m>2 時,原方程永遠有兩個實數根.分析: 配方法 論證例 2.已知關于 x 的方程有兩個不相等

9、的實數根.(1)求 k 的取值范圍;(2)是否存在實數 k, 使此方程的兩個實數根的倒數和等于 0?若存在, 求出 k 的值;若不存在, 說明理由.(1)且 (2)不存在,k=-1時無實數根例 3.已知關于 x 的方程(1)若這個方程有實數根, 求 k 的取值范圍;(2)若這個方程有一個根為 1, 求 k 的值;(1)k5 (2)例 4.已知關于 x 的一元二次方程(1)求證: 無論m取什么實數值, 這個方程總有兩個不相等的實數根。(2)若這個方程的兩個實數根 滿足, 求 m 的值。(1)(2),代入方程求m的值,例 5.當 m 為何值時, 方程的兩根:(2) 均為正數; (2)均為負數; (

10、3)一個正數, 一個負數; (4)一根為零; (5)互為倒數; (6)都大于 2.分析:兩根之和和兩根之積去判斷。例 6.已知 a,b,c,是 ABC 的三邊長, 且關于 x 的方程 有兩個相等的實根,求證: 這個三角形是直角三角形。證明:例 7.若 n>0 ,關于 x 的方程有兩個相等的正的實數根, 求的值。分析:課堂練習:1.下列一元二次方程中, 沒有實數根的是( C)A. B. C. D. 2.已知是方程的兩個根,則的值是( A )A.3 B.-3 C C. D .13.關于 x 的二次方程的一個根為 0, 則 m 的值為(B )A.1 B.-3 C.1 或3 D.不等于 1 的實

11、數4.方程 的兩根互為相反數, k 的值為( C )A. k =5或 - 5 B. k =5 C. k = -5 D.以上都不對5.若方程的兩根之差的平方為 48, 則 m 的值為( A )A.±8 B.8 C.-8 D.±46.已知關于 x 的方程, 若有一個根為0, 則 m=_7_ , 這時方程的另一個根是_0_; 若兩根之和為, 則 m=_-9_,這時方程的兩個根為_7.已知方程 的一個根為, 可求得 p=_8.若是關于 x 的方程的一個根, 則另一個根為 ,k = _2_ 。9.方程兩根為, 則。10.要使與是同類項, 則 n=_2或3_11.解下列方程:(1) (

12、2) (3) 12.關于 x 的方程有實數根, 求 a 的取值范圍。且13.設是方程的兩根, 利用根與系數關系求下列各式的值:(1) ; (2) ; (3) .(1)(2)6(3)314.關于 x 的方程, 試說明無論 a 為任何實數, 方程總有兩個不等實數根。分析:15.已知關于 x 的方程 ,( 1) m 為何值時, 方程有兩個相等的實數根?( 2) 是否存在實數 m, 使方程的兩根?若存在, 求出方程的根; 若不存在, 請說明理由。(1) ,(2),可得,解得16.關于 x 一元二次方程 有兩個相等的實數根,其中 a, b, c 是三角形三邊的長,試判斷這個三角形的形狀。解答:,或等腰三

13、角形17.已知 RtABC 中, 兩直角邊長為方程的兩根, 且斜邊長為 13, 求的值.答案:韋達定理的應用測試題日期:_月_日 滿分:_ 100 分 姓名:_ 得分:_1.關于 x 的方程 中, 如果 a<0, 那么根的情況是(C )A.有兩個相等的實數根 B.有兩個不相等的實數根 C.沒有實數根 D.不能確定2.將方程的左邊變成平方的形式是( D )A. B. C. (x - 2) 2 =5 D. 3.設 是方程的兩根, 則 的值是(C )A.15 B.12 C.6 D.34.已知 x 方程有兩個實數根, 則下列關于判別式的判斷正確的是(D )A. < 0 B. C. D. 5

14、.若關于 x 的一元二次方程有兩個不相等的實數根, 則 k 的取值范圍為( D)A. k<1 B.k0 C. k>0 D. k<1 且 k06.關于 x 的方程有兩個不相等的實數根,a 的值為(C )A. a<-2 B. - 2<a<2 C. a>-2 且 a 2 D. a -2 且 a 27.設 n 為方程的一個根, 則 等于_-1_8.如果一元二次方程 有兩個相等的實數根, 那么 k=_±2_9.如果關于 x 的方程有兩個不相等的實數根, 那么 k 的取值范圍是_10.已知是方程的兩根, 則:(1) =_-5_ ; (2) =_2_ ; (3) =_17_11.解下列一元二次方程:(1) (2) (3) 12.已知關于 x 的方程的一個根為 4,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論