




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、異方差性的檢驗和補救一、 研究目的和要求表1列出了1998年我國主要制造工業銷售收入與銷售利潤的統計資料,請利用統計軟件Eviews建立我國制造業利潤函數模型,檢驗其是否存在異方差,并加以補救。表 1 我國制造工業1998年銷售利潤與銷售收入情況行業名稱銷售利潤Y銷售收入X食品加工業187.253180.44食品制造業111.421119.88飲料制造業205.421489.89煙草加工業183.871328.59紡織業316.793862.9服裝制品業157.71779.1皮革羽絨制品81.71081.77木材加工業35.67443.74家具制造業31.06226.78造紙及紙品業134.4
2、1124.94印刷業90.12499.83文教體育用品54.4504.44石油加工業194.452363.8化學原料紙品502.614195.22醫藥制造業238.711264.1化學纖維制品81.57779.46橡膠制品業77.84692.08塑料制品業144.341345非金屬礦制品339.262866.14黑色金屬冶煉367.473868.28有色金屬冶煉144.291535.16金屬制品業201.421948.12普通機械制造354.692351.68專用設備制造238.161714.73交通運輸設備511.944011.53電子機械制造409.833286.15電子通訊設備508.1
3、54499.19儀器儀表設備72.46663.68二、 參數估計EVIEWS 軟件估計參數結果如下Dependent Variable: YMethod: Least SquaresDate: 06/01/16 Time: 20:16Sample: 1 28Included observations: 28VariableCoefficientStd. Errort-StatisticProb. C12.0334919.518090.6165300.5429X0.1043940.00844212.366580.0000R-squared0.854694
4、0; Mean dependent var213.4639Adjusted R-squared0.849105 S.D. dependent var146.4905S.E. of regression56.90455 Akaike info criterion10.98938Sum squared resid84191.34 Schwarz criterion11.08453Log likelihood-151.8513
5、160; Hannan-Quinn criter.11.01847F-statistic152.9322 Durbin-Watson stat1.212781Prob(F-statistic)0.000000用規范的形式將參數估計和檢驗結果寫下三、 檢驗模型的異方差(一) 圖形法1. 相關關系圖X Y 相關關系圖2. 殘差圖形生成殘差平方序列,做與解釋變量 X 的散點圖如下。與 X 散點圖3. 判斷由圖可以看出,殘差平方 對解釋變量 X 的散點圖主要分布在圖形中的下三角部分,大致看出殘差平方 隨 X 的變動呈增大的趨勢,因此,
6、模型很可能存在異方差。但是否確實存在異方差還應通過更進一步的檢驗。(二) Goldfeld-Quanadt檢驗1. 排序使用 Sort X 命令對解釋變量 X 進行排序。2. 構造子樣本區間,建立回歸模型樣本容量 n=28,去掉中間 c=8 個樣本值,得到兩個樣本區間 110、1928的兩組樣本值。110區間回歸估計Dependent Variable: YMethod: Least SquaresDate: 06/01/16 Time: 20:35Sample: 1 10Included observations: 10VariableCoefficientStd. Errort-Stati
7、sticProb. C15.7646614.820221.0637270.3185X0.0858940.0191824.4779370.0021R-squared0.714814 Mean dependent var77.06400Adjusted R-squared0.679166 S.D. dependent var31.70225S.E. of regression17.95685 Akaike info criterion8.7
8、90677Sum squared resid2579.587 Schwarz criterion8.851194Log likelihood-41.95338 Hannan-Quinn criter.8.724289F-statistic20.05192 Durbin-Watson stat2.280129Prob(F-statistic)0.0020611928區間回歸估計Dependent Variable: YMethod: Least Squares
9、Date: 06/01/16 Time: 20:36Sample: 19 28Included observations: 10VariableCoefficientStd. Errort-StatisticProb. C-11.99687138.6642-0.0865170.9332X0.1105520.0393672.8082090.0229R-squared0.496413 Mean dependent var369.2440Adjusted R-squared0.433465
10、0;S.D. dependent var118.6175S.E. of regression89.28163 Akaike info criterion11.99833Sum squared resid63769.67 Schwarz criterion12.05884Log likelihood-57.99163 Hannan-Quinn criter.11.93194F-statistic7.886037 D
11、urbin-Watson stat2.489267Prob(F-statistic)0.0229063. F統計量值對樣本 110回歸分析對樣本 1928 回歸分析4. 判斷取顯著性水平 ,子樣本個數為 10,變量個數為 2,因此子樣本的殘差平方和的自由度為 8,查 F 分布表得 所以拒絕原假設,表明模型確實存在異方差性。(三) White檢驗對前文參數檢驗的結果進行 White 檢驗,結果如下圖Heteroskedasticity Test: WhiteF-statistic3.607090 Prob. F(2,25)0.0420Obs*R-sq
12、uared6.270439 Prob. Chi-Square(2)0.0435Scaled explained SS7.630696 Prob. Chi-Square(2)0.0220Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 06/01/16 Time: 20:38Sample: 1 28Included observations: 28VariableCoefficientStd. Errort-Statist
13、icProb. C-3279.6692857.119-1.1478940.2619X2-0.0008710.000653-1.3340330.1942X5.6706873.1093661.8237440.0802R-squared0.223944 Mean dependent var3006.833Adjusted R-squared0.161860 S.D. dependent var5144.454S.E. of regression4709.748
14、160; Akaike info criterion19.85361Sum squared resid5.55E+08 Schwarz criterion19.99635Log likelihood-274.9506 Hannan-Quinn criter.19.89725F-statistic3.607090 Durbin-Watson stat2.576402Prob(F-statistic)0.042040故 ,取,則,所以拒絕原假設,表明模
15、型確實存在異方差性。四、 異方差的修正(加權最小二乘法)1. 權數將權數分別設置為2. 最小二乘估計在 Eviews 命令窗口輸入得到如下結果Dependent Variable: YMethod: Least SquaresDate: 06/01/16 Time: 21:39Sample: 1 28Included observations: 28Weighting series: W1Weight type: Inverse standard deviation (EViews default scaling)VariableCoefficientStd. Errort-Statistic
16、Prob. C5.9883516.4036910.9351410.3583X0.1086050.00815613.316590.0000Weighted StatisticsR-squared0.872130 Mean dependent var123.4049Adjusted R-squared0.867212 S.D. dependent var31.99804S.E. of regression32.07267 Akaike in
17、fo criterion9.842635Sum squared resid26745.07 Schwarz criterion9.937792Log likelihood-135.7969 Hannan-Quinn criter.9.871726F-statistic177.3317 Durbin-Watson stat2.386165Prob(F-statistic)0.000000 Weighted mean
18、 dep.67.92073Unweighted StatisticsR-squared0.853094 Mean dependent var213.4639Adjusted R-squared0.847443 S.D. dependent var146.4905S.E. of regression57.21696 Sum squared resid85118.31Durbin-Watson stat2.472027權數為W1 時的最小二乘估計結果Depend
19、ent Variable: YMethod: Least SquaresDate: 06/01/16 Time: 21:46Sample: 1 28Included observations: 28Weighting series: W2Weight type: Inverse standard deviation (EViews default scaling)VariableCoefficientStd. Errort-StatisticProb. C6.4971483.4866251.8634490.0737X0.1068900.0109919.7248240.00
20、00Weighted StatisticsR-squared0.784362 Mean dependent var67.92073Adjusted R-squared0.776068 S.D. dependent var75.51949S.E. of regression21.39500 Akaike info criterion9.032941Sum squared resid11901.39 Schwarz
21、criterion9.128098Log likelihood-124.4612 Hannan-Quinn criter.9.062031F-statistic94.57221 Durbin-Watson stat2.826376Prob(F-statistic)0.000000 Weighted mean dep.36.45271Unweighted StatisticsR-squared0.854180 Me
22、an dependent var213.4639Adjusted R-squared0.848571 S.D. dependent var146.4905S.E. of regression57.00507 Sum squared resid84489.02Durbin-Watson stat2.489641權數為W2 時的最小二乘估計結果Dependent Variable: YMethod: Least SquaresDate: 06/01/16 Time: 21:48Sample: 1 28Inc
23、luded observations: 28Weighting series: W3Weight type: Inverse standard deviation (EViews default scaling)VariableCoefficientStd. Errort-StatisticProb. C8.63927111.187680.7722130.4470X0.1061530.00774613.704300.0000Weighted StatisticsR-squared0.878396 Mean dependent
24、var165.8409Adjusted R-squared0.873718 S.D. dependent var67.13183S.E. of regression42.63779 Akaike info criterion10.41211Sum squared resid47267.52 Schwarz criterion10.50727Log likelihood-143.7695 Hannan-Quinn
25、criter.10.44120F-statistic187.8079 Durbin-Watson stat2.423771Prob(F-statistic)0.000000 Weighted mean dep.123.4049Unweighted StatisticsR-squared0.854451 Mean dependent var213.4639Adjusted R-squared0.848853 S.D
26、. dependent var146.4905S.E. of regression56.95205 Sum squared resid84331.95Durbin-Watson stat2.493962權數為W3 時的最小二乘估計結果3. 判斷由上述三個結果可以看出,W1 的 t 檢驗均顯著,F 檢驗也顯著,即對異方差的修正效果最好。選擇以 W1 為權數建立的回歸模型為4. 對所估計的模型再次進行 White 檢驗,觀察異方差調整情況Heteroskedasticity Test: WhiteF-statistic0.555565 Prob. F(2,25)0.5807Obs*R-squared1.191508 Prob. Chi-Square(2)0.5511Scaled explained SS1.227886
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論