




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第第頁蘇科版七年級數學下冊《9.2軸對稱》同步測試題(附答案)學校:___________姓名:___________班級:___________考號:___________一、基礎夯實1.“思明拾光”系列短視頻以中國“二十四節氣”為主線,在自然與人文之間開啟全新的閱讀視角.請你用數學的眼光觀察下列四副代表“立春”、“立夏”、“芒種”、“白露”的作品,其中是軸對稱圖形的是()A. B.C. D.2.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是()A. B.C. D.3.如圖所示,在3×3正方形網格中,已有三個小正方形被涂黑,將剩余的白色小正方形再任意涂黑一個,則所得黑色圖案是軸對稱圖形的情況有()A.6種 B.5種 C.4種 D.2種4.如圖所示,每個小正方形的邊長為1,△ABC,△DEF的頂點都在小正方形的頂點處.(1)將△ABC平移,使點A平移到點F,點B,C的對應點分別是點B′,C′,畫出△FB′C′;(2)畫出△DEF關于DF所在直線對稱的△DE′F;(3)直接寫出四邊形B′C′FE′的面積是.5.按要求作圖.(1)把圖中的三角形繞點A順時針旋轉90°,畫出旋轉后的圖形.旋轉后,點C的對應點C'的位置用數對表示是▲(2)如果1個小方格表示1平方厘米,在方格紙上設計一個面積是8平方厘米的軸對稱圖形,并畫出對稱軸.6.下列正方形網格圖中,部分方格涂上了陰影,請按不同要求作圖.(1)如圖①,將某一個方格涂上陰影,使整個圖形有兩條對稱軸;(2)如圖②,將某一個方格涂上陰影,使整個圖形有四條對稱軸.7.如圖,方格圖中每個小正方形的邊長為1,點A,B,C都是格點.(1)畫出△ABC關于直線MN對稱的△A1B1C1;(2)寫出AA1的長度.二、鞏固提高8.如圖,在網格圖中選擇一個格子涂陰影,使得整個圖形是以虛線為對稱軸的軸對稱圖形,則把陰影涂在圖中標有數字()的格子內.A.1 B.2 C.3 D.49.已知在同一平面內的兩條相等線段,它們通過一次或兩次軸對稱變化就可以重合.如圖,方格紙上的每個小方格都是邊長為1個單位長度的正方形,點A,B,C,D都在格點上,請分別在圖1、圖2中畫出對稱軸,使得線段AB通過軸對稱變化能與線段CD重合;若需兩次軸對稱的,則要畫出第一次軸對稱后的對稱線段.10.如圖,一張長方形紙折疊后壓平,點F在線段BC上,EF,GF為兩條折痕,若∠BFE=51°,∠CFG=47°,則A.16° B.18° C.20° D.22°11.將一張長方形紙片ABCD按如圖所示方式折疊,AE、AF為折痕,點B、D折疊后的對應點分別為B'、D',若∠EAF=41°,則∠B12.如圖,陰影部分是由5個小正方形組成的一個直角圖形,請用四種方法分別在如圖方格內添涂黑二個小正方形,使陰影部分成為軸對稱圖形.13.操作探究:已知在紙面上有一數軸(如圖所示)(1)操作一:折疊紙面,使1表示的點與-1表示的點重合,則-2表示的點與表示的點重合,(2)操作二:折疊紙面,使-1表示的點與3表示的點重合,回答以下問題:5表示的點與表示的點重合.(3)若數軸上A,B兩點之間距離為11,點A在點B的左側,且A,B兩點經折疊后重合,求A,B兩點表示的數,三、拓展提升14.如圖,在數軸上點A表示數-3,點B表示數1,點C表示數9.(1)若將數軸折疊,使得點A與點C重合,則點B與表示數的點重合.(2)若點A,B,C分別以每秒2個單位,1個單位和4個單位的速度在數軸上同時向左運動,點A,B,C運動后的對應點分別是點A1,B1,C1.①假設t秒鐘過后,A1,B1,C1三點中恰有一點是另外兩點的中點,求t的值.②當點C1在點B1的右側時,m?B15.如圖,△ABC是一張三角形的紙片,點D、E分別是邊AB、AC上的點.將∠A沿DE折疊,點A落在點A'(1)如圖①,當點A'落在邊AC上時,若∠A=35°,求∠BDA(2)如圖②,當點A'落在△ABC內部時,若∠A=35°,∠CEA'=34°(3)當點A'落在△ABC如圖③,若∠A=35°,∠CEA'=18°,則∠BDA如圖④,∠BDA'、∠CEA'和∠A的數量關系為參考答案1.【答案】B【知識點】軸對稱圖形2.【答案】D【知識點】軸對稱圖形【解析】【解答】解:A.是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項錯誤;C.是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項正確.故答案為:D.
【分析】如果一個平面圖形沿著某一條直線折疊,直線兩邊的部分能夠互相重合,這個圖形就叫做軸對稱圖形.3.【答案】C【知識點】利用軸對稱設計圖案【解析】【解答】解:根據題意,涂黑每一個空格都會出現一種可能情況,共出現6種可能情況,其中,涂左上角和右下角的方框所得到的黑色圖案組成的圖形是中心對稱而不是軸對稱,故一共有4種情形,故選C.【分析】根據題意,涂黑一個格共6種可能情況,結合軸對稱的意義,可得到軸對稱圖形的情況數目.4.【答案】(1)解:△FB'C'如圖所示.(2)解:△DE'F如圖所示.(3)8【知識點】三角形的面積;作圖﹣軸對稱;作圖﹣平移【解析】【解答】解:(3)四邊形B'C'FE'的面積=4×4-12×2×3-12×2×3-故答案為:8.【分析】(1)分別將點B、C先向右平移7個單位長度,再向下平移3個單位長度可得點B′、C′的位置,然后順次連接F、B′、C′即可;
(2)作出點E關于DF的對稱點E′,然后順次連接D、E′、F即可得到△DE′F;
(3)根據正方形、三角形的面積公式結合面積間的和差關系進行計算即可.5.【答案】(1)解:如圖所示,
;
C'的位置用數對表示是(3,1)(2)如圖,△DEF即為所求:
S△DEF=1【知識點】利用軸對稱設計圖案;坐標與圖形變化﹣旋轉;作圖﹣旋轉【解析】【分析】(1)根據作圖-旋轉的法則和用數對表示位置的方法,即可求解.
(2)根據軸對稱的定義:平面內,一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形,畫出符合題意的圖形即可.6.【答案】(1)解:如圖:
(2)解:如圖:
【知識點】作圖﹣軸對稱;利用軸對稱設計圖案【解析】【分析】(1)對稱軸是指圖形可以沿其折疊使得兩側部分完全重合的直線,在圖①中,添加一個方格,使得圖形有兩個對稱軸.
(2)當前的陰影部分已經形成了一條垂直和一條水平的對稱軸,為了使圖形具有四條對稱軸,我們需要添加一個陰影方格,使得圖形在兩個對角線方向上也具有對稱性.7.【答案】(1)解:如圖所示:△A1B1C1,即為所求;(2)解:由網格可得:AA1的長度為:10;【知識點】作圖﹣軸對稱【解析】【分析】(1)由網格圖的特征并結合軸對稱的性質可求解;
(2)由網格圖的特征可求解.8.【答案】C【知識點】利用軸對稱設計圖案9.【答案】解:如圖1、圖2所示.圖2【知識點】平面圖形的對稱軸【解析】【分析】(1)直接作出線段AC的垂直平分線即可;
(2)先把線段AB對稱到線段AD,然后將線段AD對稱到線段CD.10.【答案】A【知識點】角的運算;翻折變換(折疊問題)【解析】【解答】解:由折疊的性質可得∠B∴∠B∴∠B又∵∠B∴∠C故答案為:A.
【分析】利用折疊可得∠B'FE=∠BFE=51°,∠11.【答案】8°【知識點】角的運算;翻折變換(折疊問題)12.【答案】解:如圖所示:【知識點】利用軸對稱設計圖案【解析】【分析】如圖,在四個圖形中分別將兩個小正方形涂黑,并使陰影部分成為軸對稱圖形.13.【答案】(1)2(2)-3(3)設點A表示的數是b,∵數軸上A,B兩點之間距離為11,點A在點B的左側,∴點B表示的數是b+11,又∵A,B兩點經折疊后重合,∴b+(b+11)解得b=?4.5,則b+11=?4.5+11=6.5,故點A表示的數是?4.5,點B表示的數是6.5.【知識點】數軸及有理數在數軸上的表示;軸對稱的性質【解析】【解答】解:(1)∵折疊紙面,使1表示的點與?1表示的點重合,∴對稱點是原點,∴?2表示的點與2表示的點重合,故答案為:2;(2)∵折疊紙面,使?1表示的點與3表示的點重合,∴對稱點是?1+32設5表示點與a表示的點重合,則5+a2解得a=?3,故答案為:?3;【分析】(1)根據題意,找出對稱點,由數軸以及軸對稱的含義,求出答案即可;
(2)同理,運用(1)的方法,找到對稱點即可;
(3)設出點A表示的數,繼而可以表示出點B表示的數,根據數軸以及軸對稱的含義,求出答案即可。14.【答案】(1)5(2)解:①t秒后,點A1,B1,C1表示的數分別為-3-2t,1-t,9--4t,則A1B1,A1C1,B1C1的中點分別是?2?3t若A1B1的中點是C1,則?2?3t2若A1C1的中點是B1,則6?6t2若B1C1的中點是A1,則10?5t2所以t的值為4或1或16.②m·B1C1+3A1B1=m(9-4t-1+t)+3(1-t+3+2t)=3t(1-m)+8m+12,所以當m=1時,m?B【知識點】線段的中點;數軸的點常規運動模型;數軸的折疊(翻折)模型【解析】【解答】解:(1)?3+92=3,3?1=2,3+2=5,
故答案為:5.
【分析】(1)根據題意,求出點A與點C的中點,再求出點B與中點的距離,即可求出點B與表示數的點重合;
(2)①根據題意,求出點A,點B和點C運動后的對應點A1,B1和C1的坐標,再根據A1,B1,C1三點中恰有一點是另外兩點的中點,求出t的值;
(3)根據題意,求出點C1在點B1的右側時,m·B1C1+3A1B15.【答案】(1)解:由折疊可知:∠DA′E=∠A=35°,∴∠A'∴∠BDA'(2)解:由折疊可知:∠AED=∠A'ED,∵∠CEA'=34°,∴∠AED=73°,∵∠A=35°,∠A+∠ADE+∠AED=180°,∴∠ADE=180°?35°?73°=72°,∴∠A'∴∠BDA'(3)88;∠BDA【知識點】角的運算;三角形內角和定理;軸對稱的性質;翻折變換(折疊問題)【解析】【解答】解:(3)如圖③,由折疊可知:∠AED=∠A'ED,∵∠CEA'=18°,∴∠AED=99°,∵∠A=35°,∠A+∠ADE+∠AED=180°,∴∠ADE=180°?35°?99°=46°,∴∠A'∴∠BDA'故答案為:88°;如圖④,由折疊可知:∠AED=∠A'ED,∵∠A'∴∠AED=180°?∠CEA∵∠A+∠ADE+∠AED=180°,∴∠ADE=180°?∠A?(90°?1∴∠A'∴∠BDA'即∠BDA'故答案為:∠BDA'
【分析】⑴、由折疊可知∠DA′E=∠A,然后利用三角形內角和求∠ADA′,再利用鄰補角數量關系求解即可;或利用三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 什么的路上中考語文作文
- 統編版語文六年級下冊第9課《那個星期天》精美課件
- 什么的心初一語文作文
- 礦物涂料制備與性能評價考核試卷
- 電子商務的未來發展方向考核試卷
- 硅冶煉過程中的能源管理考核試卷
- 印刷業國際市場拓展策略與案例分析考核試卷
- 禮儀用品與文化傳承考核試卷
- 皮手套的彈性與舒適度改進考核試卷
- 海洋生物基因資源保護考核試卷
- 《當前國際安全形勢》課件
- 3.1 貫徹新發展理念 課件-高中政治統編版必修二經濟與社會
- 《互換性復習》課件
- 《光伏系統設計培訓》課件
- 設備的運行動態管理制度(4篇)
- 抖店仲裁申請書模板
- 借款利率協議
- 雞球蟲課件(共32張課件)《動物疫病防治》
- 八年級下 地理 商務星球版《海洋利用與保護》名師課件
- 第七章 堅持以軍事、科技、文化、社會安全為保障-國家安全教育大學生讀本教案
- 《民法典》醫療損害責任篇培訓課件
評論
0/150
提交評論