江蘇省南京市六校2024-2025學年初三回頭聯考數學試題含解析_第1頁
江蘇省南京市六校2024-2025學年初三回頭聯考數學試題含解析_第2頁
江蘇省南京市六校2024-2025學年初三回頭聯考數學試題含解析_第3頁
江蘇省南京市六校2024-2025學年初三回頭聯考數學試題含解析_第4頁
江蘇省南京市六校2024-2025學年初三回頭聯考數學試題含解析_第5頁
已閱讀5頁,還剩22頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南京市六校2024-2025學年初三回頭聯考數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km2.如圖,從一塊圓形紙片上剪出一個圓心角為90°的扇形ABC,使點A、B、C在圓周上,

將剪下的扇形作為一個圓錐側面,如果圓錐的高為,則這塊圓形紙片的直徑為(

)A.12cm B.20cm C.24cm D.28cm3.如圖,平行于BC的直線DE把△ABC分成面積相等的兩部分,則的值為()A.1 B. C.-1 D.+14.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.5.下列方程有實數根的是()A. B.C.x+2x?1=0 D.6.一次函數與二次函數在同一平面直角坐標系中的圖像可能是()A. B. C. D.7.如圖,在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,若BG=,則△CEF的面積是()A. B. C. D.8.已知如圖,△ABC為直角三角形,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.315° B.270° C.180° D.135°9.如圖,一艘海輪位于燈塔P的南偏東45°方向,距離燈塔60nmile的A處,它沿正北方向航行一段時間后,到達位于燈塔P的北偏東30°方向上的B處,這時,B處與燈塔P的距離為()A.60nmile B.60nmile C.30nmile D.30nmile10.為了盡早適應中考體育項目,小麗同學加強跳繩訓練,并把某周的練習情況做了如下記錄:周一個,周二個,周三個,周四個,周五個則小麗這周跳繩個數的中位數和眾數分別是A.180個,160個 B.170個,160個C.170個,180個 D.160個,200個二、填空題(本大題共6個小題,每小題3分,共18分)11.正方形EFGH的頂點在邊長為3的正方形ABCD邊上,若AE=x,正方形EFGH的面積為y,則y與x的函數關系式為______.12.如圖,正方形ABCD中,E為AB的中點,AF⊥DE于點O,那么等于()A.; B.; C.; D..13.如圖,ABCDE是正五邊形,已知AG=1,則FG+JH+CD=_____.14.如圖,等腰△ABC中,AB=AC=5,BC=8,點F是邊BC上不與點B,C重合的一個動點,直線DE垂直平分BF,垂足為D.當△ACF是直角三角形時,BD的長為_____.15.分解因式2x2﹣4x+2的最終結果是_____.16.如圖,C為半圓內一點,O為圓心,直徑AB長為1cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉至△B′OC′,點C′在OA上,則邊BC掃過區域(圖中陰影部分)的面積為_________cm1.三、解答題(共8題,共72分)17.(8分)關于x的一元二次方程x2+(m-1)x-(2m+3)=1.(1)求證:方程總有兩個不相等的實數根;(2)寫出一個m的值,并求出此時方程的根.18.(8分)(定義)如圖1,A,B為直線l同側的兩點,過點A作直線1的對稱點A′,連接A′B交直線l于點P,連接AP,則稱點P為點A,B關于直線l的“等角點”.(運用)如圖2,在平面直坐標系xOy中,已知A(2,3),B(﹣2,﹣3)兩點.(1)C(4,32),D(4,22),E(4,12(2)若直線l垂直于x軸,點P(m,n)是點A,B關于直線l的等角點,其中m>2,∠APB=α,求證:tanα2=n(3)若點P是點A,B關于直線y=ax+b(a≠0)的等角點,且點P位于直線AB的右下方,當∠APB=60°時,求b的取值范圍(直接寫出結果).19.(8分)已知點E是矩形ABCD的邊CD上一點,BF⊥AE于點F,求證△ABF∽△EAD.20.(8分)如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側)兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).(1)求點B,C的坐標;(2)判斷△CDB的形狀并說明理由;(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數關系式,并寫出自變量t的取值范圍.21.(8分)新春佳節,電子鞭炮因其安全、無污染開始走俏.某商店經銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調查發現,該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.(1)求w與x之間的函數關系式;(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想賣得快.那么銷售單價應定為多少元?22.(10分)如圖,拋物線y=ax2+bx+c與x軸的交點分別為A(﹣6,0)和點B(4,0),與y軸的交點為C(0,3).(1)求拋物線的解析式;(2)點P是線段OA上一動點(不與點A重合),過P作平行于y軸的直線與AC交于點Q,點D、M在線段AB上,點N在線段AC上.①是否同時存在點D和點P,使得△APQ和△CDO全等,若存在,求點D的坐標,若不存在,請說明理由;②若∠DCB=∠CDB,CD是MN的垂直平分線,求點M的坐標.23.(12分)在平面直角坐標系xOy中,拋物線,與x軸交于點C,點C在點D的左側,與y軸交于點A.求拋物線頂點M的坐標;若點A的坐標為,軸,交拋物線于點B,求點B的坐標;在的條件下,將拋物線在B,C兩點之間的部分沿y軸翻折,翻折后的圖象記為G,若直線與圖象G有一個交點,結合函數的圖象,求m的取值范圍.24.某運動品牌對第一季度A、B兩款運動鞋的銷售情況進行統計,兩款運動鞋的銷售量及總銷售額如圖6所示.1月份B款運動鞋的銷售量是A款的45

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

正負數的應用,先判斷向北、向南是不是具有相反意義的量,再用正負數表示出來【詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.本題考查正負數在生活中的應用.注意用正負數表示的量必須是具有相反意義的量.2、C【解析】

設這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,利用等腰直徑三角形的性質得到AB=R,利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到這塊圓形紙片的直徑.【詳解】設這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,則AB=R,根據題意得:2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以這塊圓形紙片的直徑為24cm.故選C.本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.3、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性質結合S△ADE=S四邊形BCED,可得出,結合BD=AB﹣AD即可求出的值.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四邊形BCED,S△ABC=S△ADE+S四邊形BCED,∴,∴,故選C.【點睛】本題考查了相似三角形的判定與性質,牢記相似三角形的面積比等于相似比的平方是解題的關鍵.4、B【解析】

首先證明△ABF≌△DEA得到BF=AE;設AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.本題考查了正方形的性質:正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質.會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.5、C【解析】分析:根據方程解的定義,一一判斷即可解決問題;詳解:A.∵x4>0,∴x4+2=0無解;故本選項不符合題意;B.∵≥0,∴=﹣1無解,故本選項不符合題意;C.∵x2+2x﹣1=0,△=8=4=12>0,方程有實數根,故本選項符合題意;D.解分式方程=,可得x=1,經檢驗x=1是分式方程的增根,故本選項不符合題意.故選C.點睛:本題考查了無理方程、根的判別式、高次方程、分式方程等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.6、D【解析】

本題可先由一次函數y=ax+c圖象得到字母系數的正負,再與二次函數y=ax2+bx+c的圖象相比較看是否一致.【詳解】A、一次函數y=ax+c與y軸交點應為(0,c),二次函數y=ax2+bx+c與y軸交點也應為(0,c),圖象不符合,故本選項錯誤;B、由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項錯誤;C、由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項錯誤;D、由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點相同,故本選項正確.故選D.本題考查拋物線和直線的性質,用假設法來搞定這種數形結合題是一種很好的方法.7、A【解析】

解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足為G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S△ABE=AE?BG=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,則S△CEF=S△ABE=.故選A.本題考查1.相似三角形的判定與性質;2.平行四邊形的性質,綜合性較強,掌握相關性質定理正確推理論證是解題關鍵.8、B【解析】

利用三角形內角與外角的關系:三角形的任一外角等于和它不相鄰的兩個內角之和解答.【詳解】如圖,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故選B.此題主要考查了三角形內角與外角的關系:三角形的任一外角等于和它不相鄰的兩個內角之和.9、B【解析】

如圖,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60nmile,∴PE=AE=×60=nmile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=nmile.故選B.10、B【解析】

根據中位數和眾數的定義分別進行解答即可.【詳解】解:把這些數從小到大排列為160,160,170,180,200,最中間的數是170,則中位數是170;160出現了2次,出現的次數最多,則眾數是160;故選B.此題考查了中位數和眾數,掌握中位數和眾數的定義是解題的關鍵;中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數;眾數是一組數據中出現次數最多的數.二、填空題(本大題共6個小題,每小題3分,共18分)11、y=2x2﹣6x+2【解析】

由AAS證明△DHE≌△AEF,得出DE=AF=x,DH=AE=1-x,再根據勾股定理,求出EH2,即可得到y與x之間的函數關系式.【詳解】如圖所示:∵四邊形ABCD是邊長為1的正方形,∴∠A=∠D=20°,AD=1.∴∠1+∠2=20°,∵四邊形EFGH為正方形,∴∠HEF=20°,EH=EF.∴∠1+∠1=20°,∴∠2=∠1,在△AHE與△BEF中,∴△DHE≌△AEF(AAS),∴DE=AF=x,DH=AE=1-x,在Rt△AHE中,由勾股定理得:EH2=DE2+DH2=x2+(1-x)2=2x2-6x+2;即y=2x2-6x+2(0<x<1),故答案為y=2x2-6x+2.本題考查了正方形的性質、全等三角形的判定與性質、勾股定理,本題難度適中,求出y與x之間的函數關系式是解題的關鍵.12、D【解析】

利用△DAO與△DEA相似,對應邊成比例即可求解.【詳解】∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴即∵AE=AD∴故選D.13、+1【解析】

根據對稱性可知:GJ∥BH,GB∥JH,∴四邊形JHBG是平行四邊形,∴JH=BG,同理可證:四邊形CDFB是平行四邊形,∴CD=FB,∴FG+JH+CD=FG+BG+FB=2BF,設FG=x,∵∠AFG=∠AFB,∠FAG=∠ABF=36°,∴△AFG∽△BFA,∴AF2=FG?BF,∵AF=AG=BG=1,∴x(x+1)=1,∴x=(負根已經舍棄),∴BF=+1=,∴FG+JH+CD=+1.故答案為+1.14、2或【解析】

分兩種情況討論:(1)當時,,利用等腰三角形的三線合一性質和垂直平分線的性質可解;(2)當時,過點A作于點M,證明列比例式求出,從而得,再利用垂直平分線的性質得.【詳解】解:(1)當時,∵垂直平分,.(2)當時,過點A作于點,在與中,.故答案為或.本題主要考查了等腰三角形的三線合一性質和線段垂直平分線的性質定理得應用.本題難度中等.15、1(x﹣1)1【解析】

先提取公因式1,再根據完全平方公式進行二次分解.【詳解】解:1x1-4x+1,=1(x1-1x+1),=1(x-1)1.故答案為:1(x﹣1)1本題考查提公因式法與公式法的綜合運用,難度不大.16、【解析】

根據直角三角形的性質求出OC、BC,根據扇形面積公式計算即可.【詳解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1則邊BC掃過區域的面積為:故答案為.考核知識點:扇形面積計算.熟記公式是關鍵.三、解答題(共8題,共72分)17、(1)見解析;(2)x1=1,x2=2【解析】

(1)根據根的判別式列出關于m的不等式,求解可得;(2)取m=-2,代入原方程,然后解方程即可.【詳解】解:(1)根據題意,△=(m-1)2-4[-(2m+2)]=m2+6m+12=(m+2)2+4,∵(m+2)2+4>1,∴方程總有兩個不相等的實數根;(2)當m=-2時,由原方程得:x2-4x+2=1.整理,得(x-1)(x-2)=1,解得x1=1,x2=2.本題主要考查根的判別式與韋達定理,一元二次方程ax2+bx+c=1(a≠1)的根與△=b2-4ac有如下關系:①當△>1時,方程有兩個不相等的兩個實數根;②當△=1時,方程有兩個相等的兩個實數根;③當△<1時,方程無實數根.18、(1)C(2)n2(3)b<﹣735且b≠﹣2【解析】

(1)先求出B關于直線x=4的對稱點B′的坐標,根據A、B′的坐標可得直線AB′的解析式,把x=4代入求出P點的縱坐標即可得答案;(2)如圖:過點A作直線l的對稱點A′,連A′B′,交直線l于點P,作BH⊥l于點H,根據對稱性可知∠APG=A′PG,由∠AGP=∠BHP=90°可證明△AGP∽△BHP,根據相似三角形對應邊成比例可得m=2根據外角性質可知∠A=∠A′=α2根據對稱性質可證明△ABQ是等邊三角形,即點Q為定點,若直線y=ax+b(a≠0)與圓相切,易得P、Q重合,所以直線y=ax+b(a≠0)過定點Q,連OQ,過點A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N,可證明△AMO∽△ONQ,根據相似三角形對應邊成比例可得ON、NQ的長,即可得Q點坐標,根據A、B、Q的坐標可求出直線AQ、BQ的解析式,根據P與A、B重合時b的值求出b的取值范圍即可.【詳解】(1)點B關于直線x=4的對稱點為B′(10,﹣3),∴直線AB′解析式為:y=﹣34當x=4時,y=32故答案為:C(2)如圖,過點A作直線l的對稱點A′,連A′B′,交直線l于點P作BH⊥l于點H∵點A和A′關于直線l對稱∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴AGBH=GP∴mn=23,即m=23∵∠APB=α,AP=AP′,∴∠A=∠A′=α2在Rt△AGP中,tanα2=(3)如圖,當點P位于直線AB的右下方,∠APB=60°時,點P在以AB為弦,所對圓周為60°,且圓心在AB下方若直線y=ax+b(a≠0)與圓相交,設圓與直線y=ax+b(a≠0)的另一個交點為Q由對稱性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等邊三角形∵線段AB為定線段∴點Q為定點若直線y=ax+b(a≠0)與圓相切,易得P、Q重合∴直線y=ax+b(a≠0)過定點Q連OQ,過點A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N∵A(2,3),B(﹣2,﹣3)∴OA=OB=7∵△ABQ是等邊三角形∴∠AOQ=∠BOQ=90°,OQ=3OB=∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴AMON∴20N∴ON=23,NQ=3,∴Q點坐標為(3,﹣23)設直線BQ解析式為y=kx+b將B、Q坐標代入得-3解得k=-3∴直線BQ的解析式為:y=﹣35設直線AQ的解析式為:y=mx+n,將A、Q兩點代入3=2m+n解得m=-33∴直線AQ的解析式為:y=﹣33x+7若點P與B點重合,則直線PQ與直線BQ重合,此時,b=﹣73若點P與點A重合,則直線PQ與直線AQ重合,此時,b=73又∵y=ax+b(a≠0),且點P位于AB右下方,∴b<﹣735且b≠﹣23或b>本題考查對稱性質、相似三角形的判定與性質、根據待定系數法求一次函數解析式及銳角三角函數正切的定義,熟練掌握相關知識是解題關鍵.19、證明見解析【解析】試題分析:先利用等角的余角相等得到根據有兩組角對應相等,即可證明兩三角形相似.試題解析:∵四邊形為矩形,于點F,點睛:兩組角對應相等,兩三角形相似.20、(Ⅰ)B(3,0);C(0,3);(Ⅱ)為直角三角形;(Ⅲ).【解析】

(1)首先用待定系數法求出拋物線的解析式,然后進一步確定點B,C的坐標.(2)分別求出△CDB三邊的長度,利用勾股定理的逆定理判定△CDB為直角三角形.(3)△COB沿x軸向右平移過程中,分兩個階段:①當0<t≤時,如答圖2所示,此時重疊部分為一個四邊形;②當<t<3時,如答圖3所示,此時重疊部分為一個三角形.【詳解】解:(Ⅰ)∵點在拋物線上,∴,得∴拋物線解析式為:,令,得,∴;令,得或,∴.(Ⅱ)為直角三角形.理由如下:由拋物線解析式,得頂點的坐標為.如答圖1所示,過點作軸于點M,則,,.過點作于點,則,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.∵,∴為直角三角形.(Ⅲ)設直線的解析式為,∵,∴,解得,∴,直線是直線向右平移個單位得到,∴直線的解析式為:;設直線的解析式為,∵,∴,解得:,∴.連續并延長,射線交交于,則.在向右平移的過程中:(1)當時,如答圖2所示:設與交于點,可得,.設與的交點為,則:.解得,∴..(2)當時,如答圖3所示:設分別與交于點、點.∵,∴,.直線解析式為,令,得,∴..綜上所述,與的函數關系式為:.21、(1)w=﹣2x2+480x﹣25600;(2)銷售單價定為120元時,每天銷售利潤最大,最大銷售利潤1元(3)銷售單價應定為100元【解析】

(1)用每件的利潤乘以銷售量即可得到每天的銷售利潤,即然后化為一般式即可;

(2)把(1)中的解析式進行配方得到頂點式然后根據二次函數的最值問題求解;

(3)求所對應的自變量的值,即解方程然后檢驗即可.【詳解】(1)w與x的函數關系式為:(2)∴當時,w有最大值.w最大值為1.答:銷售單價定為120元時,每天銷售利潤最大,最大銷售利潤1元.(3)當時,解得:∵想賣得快,不符合題意,應舍去.答:銷售單價應定為100元.22、(1)y=﹣x2﹣x+3;(2)①點D坐標為(﹣,0);②點M(,0).【解析】

(1)應用待定系數法問題可解;(2)①通過分類討論研究△APQ和△CDO全等②由已知求點D坐標,證明DN∥BC,從而得到DN為中線,問題可解.【詳解】(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論