江蘇泰州地區2024-2025學年初三寒假模擬(二)數學試題試卷含解析_第1頁
江蘇泰州地區2024-2025學年初三寒假模擬(二)數學試題試卷含解析_第2頁
江蘇泰州地區2024-2025學年初三寒假模擬(二)數學試題試卷含解析_第3頁
江蘇泰州地區2024-2025學年初三寒假模擬(二)數學試題試卷含解析_第4頁
江蘇泰州地區2024-2025學年初三寒假模擬(二)數學試題試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇泰州地區2024-2025學年初三寒假模擬(二)數學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數y=(k<0)的圖象經過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣362.計算(ab2)3的結果是()A.ab5 B.ab6 C.a3b5 D.a3b63.若是關于x的方程的一個根,則方程的另一個根是()A.9 B.4 C.4 D.34.如圖,∠AOB=45°,OC是∠AOB的角平分線,PM⊥OB,垂足為點M,PN∥OB,PN與OA相交于點N,那么的值等于()A. B. C. D.5.如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為A.6 B.8 C.10 D.126.小紅上學要經過三個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望小學時經過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.7.某班

30名學生的身高情況如下表:身高人數134787則這

30

名學生身高的眾數和中位數分別是A., B.,C., D.,8.對于代數式ax2+bx+c(a≠0),下列說法正確的是()①如果存在兩個實數p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)②存在三個實數m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,則一定存在兩個實數m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,則一定存在兩個實數m<n,使am2+bm+c<0<an2+bn+cA.③ B.①③ C.②④ D.①③④9.如圖,三角形紙片ABC,AB=10cm,BC=7cm,AC=6cm,沿過點B的直線折疊這個三角形,使頂點C落在AB邊上的點E處,折痕為BD,則△AED的周長為()A.9cm B.13cm C.16cm D.10cm10.小明和他的爸爸媽媽共3人站成一排拍照,他的爸爸媽媽相鄰的概率是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.不等式組的解集為,則的取值范圍為_____.12.如圖,這是一幅長為3m,寬為1m的長方形世界杯宣傳畫,為測量宣傳畫上世界杯圖案的面積,現將宣傳畫平鋪在地上,向長方形宣傳畫內隨機投擲骰子(假設骰子落在長方形內的每一點都是等可能的),經過大量重復投擲試驗,發現骰子落在世界杯圖案中的頻率穩定在常數0.4附近,由此可估計宣傳畫上世界杯圖案的面積約為___________________m1.13.不等式組的整數解是_____.14.如圖,在△ABC中,∠C=120°,AB=4cm,兩等圓⊙A與⊙B外切,則圖中兩個扇形的面積之和(即陰影部分)為cm2(結果保留π).15.如圖,正五邊形ABCDE放入某平面直角坐標系后,若頂點A,B,C,D的坐標分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標是_____.16.如圖,在矩形ABCD中,對角線BD的長為1,點P是線段BD上的一點,聯結CP,將△BCP沿著直線CP翻折,若點B落在邊AD上的點E處,且EP//AB,則AB的長等于________.17.已知x1,x2是方程x2-3x-1=0的兩根,則=______.三、解答題(共7小題,滿分69分)18.(10分)如圖,某次中俄“海上聯合”反潛演習中,我軍艦A測得潛艇C的俯角為30°.位于軍艦A正上方1000米的反潛直升機B側得潛艇C的俯角為68°.試根據以上數據求出潛艇C離開海平面的下潛深度.(結果保留整數.參考數據:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,≈1.7)19.(5分)已知△ABC中,D為AB邊上任意一點,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,(1)如圖1所示,當α=60°時,求證:△DCE是等邊三角形;(2)如圖2所示,當α=45°時,求證:=;(3)如圖3所示,當α為任意銳角時,請直接寫出線段CE與DE的數量關系:=_____.20.(8分)為落實“垃圾分類”,環衛部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.直接寫出甲投放的垃圾恰好是A類的概率;求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.21.(10分)拋一枚質地均勻六面分別刻有1、2、3、4、5、6點的正方體骰子兩次,若記第一次出現的點數為a,第二次出現的點數為b,則以方程組的解為坐標的點在第四象限的概率為_____.22.(10分)先化簡,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.23.(12分)某校在一次大課間活動中,采用了四種活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調查,根據調查統計結果,繪制了不完整的統計圖.請結合統計圖,回答下列問題:(1)本次調查學生共人,a=,并將條形圖補充完整;(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?(3)學校讓每班在A、B、C、D四種活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.24.(14分)如圖,△DEF是由△ABC通過一次旋轉得到的,請用直尺和圓規畫出旋轉中心.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數y=(k<0)的圖象經過點B,∴﹣4=,得k=﹣32.故選B.本題主要考查菱形的性質和用待定系數法求反函數的系數,解此題的關鍵在于根據A點坐標求得OA的長,再根據菱形的性質求得B點坐標,然后用待定系數法求得反函數的系數即可.2、D【解析】試題分析:根據積的乘方的性質進行計算,然后直接選取答案即可.試題解析:(ab2)3=a3?(b2)3=a3b1.故選D.考點:冪的乘方與積的乘方.3、D【解析】

解:設方程的另一個根為a,由一元二次方程根與系數的故選可得,解得a=,故選D.4、B【解析】

過點P作PE⊥OA于點E,根據角平分線上的點到角的兩邊的距離相等可得PE=PM,再根據兩直線平行,內錯角相等可得∠POM=∠OPN,根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠PNE=∠AOB,再根據直角三角形解答.【詳解】如圖,過點P作PE⊥OA于點E,∵OP是∠AOB的平分線,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴=.故選:B.本題考查了角平分線上的點到角的兩邊距離相等的性質,直角三角形的性質,以及三角形的一個外角等于與它不相鄰的兩個內角的和,作輔助線構造直角三角形是解題的關鍵.5、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據三角形的面積公式求出AD的長,再再根據EF是線段AC的垂直平分線可知,點C關于直線EF的對稱點為點A,故AD的長為CM+MD的最小值,由此即可得出結論.【詳解】連接AD,∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=16,解得AD=8,∵EF是線段AC的垂直平分線,∴點C關于直線EF的對稱點為點A,∴AD的長為CM+MD的最小值,∴△CDM的周長最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故選C.本題考查的是軸對稱-最短路線問題,熟知等腰三角形三線合一的性質是解答此題的關鍵.6、B【解析】分析:列舉出所有情況,看各路口都是綠燈的情況占總情況的多少即可.詳解:畫樹狀圖,得∴共有8種情況,經過每個路口都是綠燈的有一種,∴實際這樣的機會是.故選B.點睛:此題考查了樹狀圖法求概率,樹狀圖法適用于三步或三步以上完成的事件,解題時要注意列出所有的情形.用到的知識點為:概率=所求情況數與總情況數之比.7、A【解析】

找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數;眾數是一組數據中出現次數最多的數據.【詳解】解:這組數據中,出現的次數最多,故眾數為,

共有30人,

第15和16人身高的平均數為中位數,

即中位數為:,

故選:A.本題考查了眾數和中位數的知識,一組數據中出現次數最多的數據叫做眾數;將一組數據按照從小到大或從大到小的順序排列,如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.8、A【解析】設(1)如果存在兩個實數p≠q,使得ap2+bp+c=aq2+bq+c,則說明在中,當x=p和x=q時的y值相等,但并不能說明此時p、q是與x軸交點的橫坐標,故①中結論不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,則說明在中當x=m、n、s時,對應的y值相等,因此m、n、s中至少有兩個數是相等的,故②錯誤;(3)如果ac<0,則b2-4ac>0,則的圖象和x軸必有兩個不同的交點,所以此時一定存在兩個實數m<n,使am2+bm+c<0<an2+bn+c,故③在結論正確;(4)如果ac>0,則b2-4ac的值的正負無法確定,此時的圖象與x軸的交點情況無法確定,所以④中結論不一定成立.綜上所述,四種說法中正確的是③.故選A.9、A【解析】試題分析:由折疊的性質知,CD=DE,BC=BE.易求AE及△AED的周長.解:由折疊的性質知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周長=AD+DE+AE=AC+AE=6+3=9(cm).故選A.點評:本題利用了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.10、D【解析】試題解析:設小明為A,爸爸為B,媽媽為C,則所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸媽媽相鄰的概率是:,故選D.二、填空題(共7小題,每小題3分,滿分21分)11、k≥1【解析】解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.故答案為k≥1.12、1.4【解析】

由概率估計圖案在整副畫中所占比例,再求出圖案的面積.【詳解】估計宣傳畫上世界杯圖案的面積約為3×1×0.4=1.4m1.故答案為1.4本題考核知識點:幾何概率.解題關鍵點:由幾何概率估計圖案在整副畫中所占比例.13、﹣1、0、1【解析】

求出每個不等式的解集,根據找不等式組解集的規律找出不等式組的解集,即可得出答案.【詳解】,解不等式得:,解不等式得:,不等式組的解集為,不等式組的整數解為-1,0,1.故答案為:-1,0,1.本題考查的知識點是一元一次不等式組的整數解,解題關鍵是注意解集范圍從而得出整數解.14、.【解析】

圖中陰影部分的面積就是兩個扇形的面積,圓A,B的半徑為2cm,則根據扇形面積公式可得陰影面積.【詳解】(cm2).故答案為.考點:1、扇形的面積公式;2、兩圓相外切的性質.15、(3,2).【解析】

根據題意得出y軸位置,進而利用正多邊形的性質得出E點坐標.【詳解】解:如圖所示:∵A(0,a),∴點A在y軸上,∵C,D的坐標分別是(b,m),(c,m),∴B,E點關于y軸對稱,∵B的坐標是:(﹣3,2),∴點E的坐標是:(3,2).故答案為:(3,2).此題主要考查了正多邊形和圓,正確得出y軸的位置是解題關鍵.16、【解析】

設CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,進而得出PE=a2,再根據△DEP∽△DAB,即可得到,即,可得,即可得到AB的長等于.【詳解】如圖,設CD=AB=a,則BC2=BD2-CD2=1-a2,

由折疊可得,CE=BC,BP=EP,

∴CE2=1-a2,

∴Rt△CDE中,DE2=CE2-CD2=1-2a2,

∵PE∥AB,∠A=90°,

∴∠PED=90°,

∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,

∴PE=a2,

∵PE∥AB,

∴△DEP∽△DAB,

∴,即,

∴,

即a2+a-1=0,

解得(舍去),

∴AB的長等于AB=.故答案為.17、﹣1.【解析】試題解析:∵,是方程的兩根,∴、,∴===﹣1.故答案為﹣1.三、解答題(共7小題,滿分69分)18、潛艇C離開海平面的下潛深度約為308米【解析】試題分析:過點C作CD⊥AB,交BA的延長線于點D,則AD即為潛艇C的下潛深度,用銳角三角函數分別在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之間的關系列出方程求解.試題解析:過點C作CD⊥AB,交BA的延長線于點D,則AD即為潛艇C的下潛深度,根據題意得:∠ACD=30°,∠BCD=68°,設AD=x,則BD=BA+AD=1000+x,在Rt△ACD中,CD===在Rt△BCD中,BD=CD?tan68°,∴325+x=?tan68°解得:x≈100米,∴潛艇C離開海平面的下潛深度為100米.點睛:本題考查了解直角三角形的應用,解題的關鍵是作出輔助線,從題目中找出直角三角形并選擇合適的邊角關系求解.視頻19、1【解析】試題分析:(1)證明△CFD≌△DAE即可解決問題.(2)如圖2中,作FG⊥AC于G.只要證明△CFD∽△DAE,推出=,再證明CF=AD即可.(3)證明EC=ED即可解決問題.試題解析:(1)證明:如圖1中,∵∠ABC=∠ACB=60°,∴△ABC是等邊三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等邊三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等邊三角形.(2)證明:如圖2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴=.∵四邊形ADFG是矩形,FC=FG,∴FG=AD,CF=AD,∴=.(3)解:如圖3中,設AC與DE交于點O.∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴=,∴=.∵∠COE=∠DOA,∴△COE∽△DOA,∴∠CEO=∠DAO.∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB,∴∠EDC=∠ECD,∴EC=ED,∴=1.點睛:本題考查了相似三角形綜合題、全等三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題,屬于中考壓軸題.20、(1)(2).【解析】

(1)根據總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現的所有可能,及符合條件的可能,根據概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結果有12種.所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論