




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省自貢市富順縣2024-2025學年第二學期初三年級一模考試數學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.22.-10-4的結果是()A.-7B.7C.-14D.133.將弧長為2πcm、圓心角為120°的扇形圍成一個圓錐的側面,則這個圓錐的高是()A.cm B.2cm C.2cm D.cm4.不等式組的解集在數軸上可表示為()A. B. C. D.5.某公園里鮮花的擺放如圖所示,第①個圖形中有3盆鮮花,第②個圖形中有6盆鮮花,第③個圖形中有11盆鮮花,……,按此規律,則第⑦個圖形中的鮮花盆數為()A.37 B.38 C.50 D.516.下列運算正確的是()A.a12÷a4=a3 B.a4?a2=a8 C.(﹣a2)3=a6 D.a?(a3)2=a77.一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球則兩次摸到的球的顏色不同的概率為()A. B. C. D.8.在一個口袋中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機地摸出一個小球然后放回,再隨機地摸出一個小球.則兩次摸出的小球的標號的和等于6的概率為()A. B. C. D.9.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個銳角之和一定是鈍角D.相等的兩個角是對頂角10.下列命題中,錯誤的是()A.三角形的兩邊之和大于第三邊B.三角形的外角和等于360°C.等邊三角形既是軸對稱圖形,又是中心對稱圖形D.三角形的一條中線能將三角形分成面積相等的兩部分11.某城市幾條道路的位置關系如圖所示,已知AB∥CD,AE與AB的夾角為48°,若CF與EF的長度相等,則∠C的度數為()A.48° B.40° C.30° D.24°12.點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數y=的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.不等式組的最小整數解是_____.14.如圖是我市某連續7天的最高氣溫與最低氣溫的變化圖,根據圖中信息可知,這7天中最大的日溫差是℃.15.如圖1,在平面直角坐標系中,將?ABCD放置在第一象限,且AB∥x軸,直線y=﹣x從原點出發沿x軸正方向平移,在平移過程中直線被平行四邊形截得的線段長度l與直線在x軸上平移的距離m的函數圖象如圖2,那么ABCD面積為_____.16.據報道,截止2018年2月,我國在澳大利亞的留學生已經達到17.3萬人,將17.3萬用科學記數法表示為__________.17.比較大小:3_________(填<,>或=).18.閱讀材料:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.設CD=x,若AB=4,DE=2,BD=8,則可用含x的代數式表示AC+CE的長為.然后利用幾何知識可知:當A、C、E在一條直線上時,x=時,AC+CE的最小值為1.根據以上閱讀材料,可構圖求出代數式的最小值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為落實黨中央“長江大保護”新發展理念,我市持續推進長江岸線保護,還洞庭湖和長江水清岸綠的自然生態原貌.某工程隊負責對一面積為33000平方米的非法砂石碼頭進行拆除,回填土方和復綠施工,為了縮短工期,該工程隊增加了人力和設備,實際工作效率比原計劃每天提高了20%,結果提前11天完成任務,求實際平均每天施工多少平方米?20.(6分)如圖,已知矩形ABCD中,AB=3,AD=m,動點P從點D出發,在邊DA上以每秒1個單位的速度向點A運動,連接CP,作點D關于直線PC的對稱點E,設點P的運動時間為t(s).(1)若m=5,求當P,E,B三點在同一直線上時對應的t的值.(2)已知m滿足:在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于2,求所有這樣的m的取值范圍.21.(6分)如圖,在Rt△ABC中,∠C=90°,AC=AB.求證:∠B=30°.請填空完成下列證明.證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD().∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.22.(8分)勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發現;當兩個全等的直角三角形如圖(1)擺放時可以利用面積法”來證明勾股定理,過程如下如圖(1)∠DAB=90°,求證:a2+b2=c2證明:連接DB,過點D作DF⊥BC交BC的延長線于點F,則DF=b-aS四邊形ADCB=S四邊形ADCB=∴化簡得:a2+b2=c2請參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c223.(8分)如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E.求證:DE=AB;以D為圓心,DE為半徑作圓弧交AD于點G,若BF=FC=1,試求EG的長.24.(10分)如圖,點A、B在⊙O上,點O是⊙O的圓心,請你只用無刻度的直尺,分別畫出圖①和圖②中∠A的余角.(1)圖①中,點C在⊙O上;(2)圖②中,點C在⊙O內;25.(10分)某市政府大力支持大學生創業.李明在政府的扶持下投資銷售一種進價為20元的護眼臺燈.銷售過程中發現,每月銷售量Y(件)與銷售單價x(元)之間的關系可近似的看作一次函數:y=﹣10x+1.設李明每月獲得利潤為W(元),當銷售單價定為多少元時,每月獲得利潤最大?根據物價部門規定,這種護眼臺燈不得高于32元,如果李明想要每月獲得的利潤2000元,那么銷售單價應定為多少元?26.(12分)小昆和小明玩摸牌游戲,游戲規則如下:有3張背面完全相同,牌面標有數字1、2、3的紙牌,將紙牌洗勻后背面朝上放在桌面上,隨機抽出一張,記下牌面數字,放回后洗勻再隨機抽出一張.請用畫樹形圖或列表的方法(只選其中一種),表示出兩次抽出的紙牌數字可能出現的所有結果;若規定:兩次抽出的紙牌數字之和為奇數,則小昆獲勝,兩次抽出的紙牌數字之和為偶數,則小明獲勝,這個游戲公平嗎?為什么?27.(12分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統計分析,繪制了頻數分布表和統計圖,請你根據圖表中的信息完成下列問題:分組頻數頻率第一組(0≤x<15)30.15第二組(15≤x<30)6a第三組(30≤x<45)70.35第四組(45≤x<60)b0.20(1)頻數分布表中a=_____,b=_____,并將統計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題分析:先根據折疊的性質得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了勾股定理.2、C【解析】解:-10-4=-1.故選C.3、B【解析】
由弧長公式可求解圓錐母線長,再由弧長可求解圓錐底面半徑長,再運用勾股定理即可求解圓錐的高.【詳解】解:設圓錐母線長為Rcm,則2π=,解得R=3cm;設圓錐底面半徑為rcm,則2π=2πr,解得r=1cm.由勾股定理可得圓錐的高為=2cm.故選擇B.本題考查了圓錐的概念和弧長的計算.4、A【解析】
先求出每個不等式的解集,再求出不等式組的解集即可.【詳解】解:∵不等式①得:x>1,解不等式②得:x≤2,∴不等式組的解集為1<x≤2,在數軸上表示為:,故選A.本題考查了解一元一次不等式組和在數軸上表示不等式組的解集,能根據不等式的解集找出不等式組的解集是解此題的關鍵.5、D【解析】試題解析:第①個圖形中有盆鮮花,第②個圖形中有盆鮮花,第③個圖形中有盆鮮花,…第n個圖形中的鮮花盆數為則第⑥個圖形中的鮮花盆數為故選C.6、D【解析】
分別根據同底數冪的除法、乘法和冪的乘方的運算法則逐一計算即可得.【詳解】解:A、a12÷a4=a8,此選項錯誤;
B、a4?a2=a6,此選項錯誤;
C、(-a2)3=-a6,此選項錯誤;
D、a?(a3)2=a?a6=a7,此選項正確;
故選D.本題主要考查冪的運算,解題的關鍵是掌握同底數冪的除法、乘法和冪的乘方的運算法則.7、B【解析】
本題主要需要分類討論第一次摸到的球是白球還是紅球,然后再進行計算.【詳解】①若第一次摸到的是白球,則有第一次摸到白球的概率為,第二次,摸到白球的概率為,則有;②若第一次摸到的球是紅色的,則有第一次摸到紅球的概率為,第二次摸到白球的概率為1,則有,則兩次摸到的球的顏色不同的概率為.掌握分類討論的方法是本題解題的關鍵.8、C【解析】列舉出所有情況,看兩次摸出的小球的標號的和等于6的情況數占總情況數的多少即可.解:共16種情況,和為6的情況數有3種,所以概率為.故選C.9、B【解析】
利用對頂角的性質、平方根的性質、銳角和鈍角的定義分別判斷后即可確定正確的選項.【詳解】A、若a2=b2,則a=±b,錯誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個銳角的和不一定是鈍角,故錯誤,是假命題;D、相等的兩個角不一定是對頂角,故錯誤,是假命題.故選B.考查了命題與定理的知識,解題的關鍵是了解對頂角的性質、平方根的性質、銳角和鈍角的定義,難度不大.10、C【解析】
根據三角形的性質即可作出判斷.【詳解】解:A、正確,符合三角形三邊關系;B、正確;三角形外角和定理;C、錯誤,等邊三角形既是軸對稱圖形,不是中心對稱圖形;D、三角形的一條中線能將三角形分成面積相等的兩部分,正確.故選:C.本題考查了命題真假的判斷,屬于基礎題.根據定義:符合事實真理的判斷是真命題,不符合事實真理的判斷是假命題,不難選出正確項.11、D【解析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=∠1=×48°=24°.故選D.點睛:本題考查了等腰三角形的性質,平行線的性質:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.12、D【解析】
先根據反比例函數的解析式判斷出函數圖象所在的象限,再根據x1<x2<0<x1,判斷出三點所在的象限,再根據函數的增減性即可得出結論.【詳解】∵反比例函數y=中,k=1>0,∴此函數圖象的兩個分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,點C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故選D.本題考查的是反比例函數圖象上點的坐標特點,先根據題意判斷出函數圖象所在的象限及三點所在的象限是解答此題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-1【解析】分析:先求出每個不等式的解集,再求出不等式組的解集,即可得出答案.詳解:.∵解不等式①得:x>-3,解不等式②得:x≤1,∴不等式組的解集為-3<x≤1,∴不等式組的最小整數解是-1,故答案為:-1.點睛:本題考查了解一元一次不等式組和不等式組的整數解,能根據不等式的解集得出不等式組的解集是解此題的關鍵.14、11.【解析】試題解析:∵由折線統計圖可知,周一的日溫差=8℃+1℃=9℃;周二的日溫差=7℃+1℃=8℃;周三的日溫差=8℃+1℃=9℃;周四的日溫差=9℃;周五的日溫差=13℃﹣5℃=8℃;周六的日溫差=15℃﹣71℃=8℃;周日的日溫差=16℃﹣5℃=11℃,∴這7天中最大的日溫差是11℃.考點:1.有理數大小比較;2.有理數的減法.15、1【解析】
根據圖象可以得到當移動的距離是4時,直線經過點A,當移動距離是7時,直線經過D,在移動距離是1時經過B,則AB=1-4=4,當直線經過D點,設其交AB與E,則DE=2,作DF⊥AB于點F.利用三角函數即可求得DF即平行四邊形的高,然后利用平行四邊形的面積公式即可求解【詳解】解:由圖象可知,當移動距離為4時,直線經過點A,當移動距離為7時,直線經過點D,移動距離為1時,直線經過點B,則AB=1﹣4=4,當直線經過點D,設其交AB于點E,則DE=2,作DF⊥AB于點F,∵y=﹣x于x軸負方向成45°角,且AB∥x軸,∴∠DEF=45°,∴DF=EF,∴在直角三角形DFE中,DF2+EF2=DE2,∴2DF2=1∴DF=2,那么ABCD面積為:AB?DF=4×2=1,故答案為1.此題主要考查平行四邊形的性質和一次函數圖象與幾何變換,解題關鍵在于利用好輔助線16、1.73×1.【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】將17.3萬用科學記數法表示為1.73×1.故答案為1.73×1.本題考查了正整數指數科學計數法,根據科學計算法的要求,正確確定出a和n的值是解答本題的關鍵.17、<【解析】【分析】根據實數大小比較的方法進行比較即可得答案.【詳解】∵32=9,9<10,∴3<,故答案為:<.【點睛】本題考查了實數大小的比較,熟練掌握實數大小比較的方法是解題的關鍵.18、4【解析】
根據已知圖象,重新構造直角三角形,利用三角形相似得出CD的長,進而利用勾股定理得出最短路徑問題.【詳解】如圖所示:C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.設CD=x,若AB=5,DE=3,BD=12,當A,C,E,在一條直線上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即當x=時,代數式有最小值,此時為:.故答案是:4.考查最短路線問題,利用了數形結合的思想,可通過構造直角三角形,利用勾股定理求解.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、1平方米【解析】
設原計劃平均每天施工x平方米,則實際平均每天施工1.2x平方米,根據時間=工作總量÷工作效率結合提前11天完成任務,即可得出關于x的分式方程,解之即可得出結論.【詳解】解:設原計劃平均每天施工x平方米,則實際平均每天施工1.2x平方米,根據題意得:﹣=11,解得:x=500,經檢驗,x=500是原方程的解,∴1.2x=1.答:實際平均每天施工1平方米.考查了分式方程的應用,解題的關鍵是找準等量關系,正確列出分式方程.20、(1)1;(1)≤m<.【解析】
(1)在Rt△ABP中利用勾股定理即可解決問題;(1)分兩種情形求出AD的值即可解決問題:①如圖1中,當點P與A重合時,點E在BC的下方,點E到BC的距離為1.②如圖3中,當點P與A重合時,點E在BC的上方,點E到BC的距離為1.【詳解】解:(1):(1)如圖1中,設PD=t.則PA=5-t.
∵P、B、E共線,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=5,
在Rt△ABP中,∵AB1+AP1=PB1,
∴31+(5-t)1=51,
∴t=1或9(舍棄),∴t=1時,B、E、P共線.(1)如圖1中,當點P與A重合時,點E在BC的下方,點E到BC的距離為1.作EQ⊥BC于Q,EM⊥DC于M.則EQ=1,CE=DC=3易證四邊形EMCQ是矩形,∴CM=EQ=1,∠M=90°,∴EM=,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,∴∴∴AD=,如圖3中,當點P與A重合時,點E在BC的上方,點E到BC的距離為1.作EQ⊥BC于Q,延長QE交AD于M.則EQ=1,CE=DC=3在Rt△ECQ中,QC=DM=,由△DME∽△CDA,∴∴,∴AD=,綜上所述,在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于1,這樣的m的取值范圍≤m<.本題考查四邊形綜合問題,根據題意作出圖形,熟練運用勾股定理和相似三角形的性質是本題的關鍵.21、直角三角形斜邊上的中線等于斜邊的一半;1.【解析】
根據直角三角形斜邊上的中線等于斜邊的一半和等邊三角形的判定與性質填空即可.【詳解】證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD(直角三角形斜邊上的中線等于斜邊的一半),∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,等邊三角形的判定與性質,重點在于邏輯思維能力的訓練.22、見解析.【解析】
首先連結BD,過點B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證.【詳解】證明:連結BD,過點B作DE邊上的高BF,則BF=b-a,∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,又∵S五邊形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),∴ab+b1+ab=ab+c1+a(b-a),∴a1+b1=c1.此題考查了勾股定理的證明,用兩種方法表示出五邊形ACBED的面積是解本題的關鍵.23、(1)詳見解析;(2)36【解析】∵四邊形ABCD是矩形,∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中∠AED=∠B=90∴△ADE≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt△ADE中,∠ADE=30°,DE=3,∴EG的長=30×π×3180=24、圖形見解析【解析】試題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機器設備租賃合同
- 酒店宴會廳租賃協議
- 2025年度金融公司合同保密協議模板
- 山西同文職業技術學院《醫學信息收集與信息處理》2023-2024學年第一學期期末試卷
- 邵陽工業職業技術學院《電路原理B》2023-2024學年第二學期期末試卷
- 物流司機雇傭合同
- 吉林省長春市“BEST合作體”2025屆高三第九次適應性考試英語試題含解析
- 佳木斯市東風區2024-2025學年五年級數學第二學期期末統考試題含答案
- 山東體育學院《網絡文學》2023-2024學年第二學期期末試卷
- 酒店外包合同范本
- 中央空調年度維保計劃及方案
- 叉車掛靠公司合同范本
- 2023-2024學年天津市中小學生mixly創意編程 第4課 聰明的按鍵-教學設計
- 團隊領導力與沖突管理技能
- 2025年四川綿陽新投集團含所屬公司招聘筆試參考題庫含答案解析
- SA8000社會責任法律法規清單一覽表
- 化學-遼寧省協作體2024-2025學年度高三上學期期末考試試題試題和答案
- 2025年文化產業投資入股保密協議模板3篇
- 《公司財務決算報表》課件
- 2025年國信證券股份有限公司招聘筆試參考題庫含答案解析
- 軍戀對象申請書表
評論
0/150
提交評論