版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省桑海中學2025年高三下學期5月階段檢測試題數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設為等差數列的前項和,若,則A. B.C. D.2.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.3.函數的部分圖象大致為()A. B.C. D.4.已知復數滿足,則()A. B. C. D.5.已知,,,則()A. B. C. D.6.已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為()A. B. C. D.7.已知的內角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.8.已知復數z1=3+4i,z2=a+i,且z1是實數,則實數a等于()A. B. C.- D.-9.我國古代數學名著《九章算術》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺10.已知全集,函數的定義域為,集合,則下列結論正確的是A. B.C. D.11.已知向量,,且,則()A. B. C.1 D.212.框圖與程序是解決數學問題的重要手段,實際生活中的一些問題在抽象為數學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數據的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知,分別是橢圓:()的左、右焦點,過左焦點的直線與橢圓交于、兩點,且,,則橢圓的離心率為__________.14.已知為等差數列,為其前n項和,若,,則_______.15.已知命題:,,那么是__________.16.兩光滑的曲線相切,那么它們在公共點處的切線方向相同.如圖所示,一列圓(an>0,rn>0,n=1,2…)逐個外切,且均與曲線y=x2相切,若r1=1,則a1=___,rn=______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知關于的不等式解集為().(1)求正數的值;(2)設,且,求證:.18.(12分)已知函數,.(1)若曲線在點處的切線方程為,求,;(2)當時,,求實數的取值范圍.19.(12分)在創建“全國文明衛生城”過程中,運城市“創城辦”為了調查市民對創城工作的了解情況,進行了一次創城知識問卷調查(一位市民只能參加一次),通過隨機抽樣,得到參加問卷調查的人的得分統計結果如表所示:.組別頻數(1)由頻數分布表可以大致認為,此次問卷調查的得分似為這人得分的平均值(同一組中的數據用該組區間的中點值作代表),利用該正態分布,求;(2)在(1)的條件下,“創城辦”為此次參加問卷調查的市民制定如下獎勵方案:①得分不低于的可以獲贈次隨機話費,得分低于的可以獲贈次隨機話費;②每次獲贈的隨機話費和對應的概率為:贈送話費的金額(單位:元)概率現有市民甲參加此次問卷調查,記(單位:元)為該市民參加問卷調查獲贈的話費,求的分布列與數學期望.附:參考數據與公式:,若,則,,20.(12分)已知集合,集合.(1)求集合;(2)若,求實數的取值范圍.21.(12分)設函數.(1)解不等式;(2)記的最大值為,若實數、、滿足,求證:.22.(10分)如圖,在四棱柱中,底面是正方形,平面平面,,.過頂點,的平面與棱,分別交于,兩點.(Ⅰ)求證:;(Ⅱ)求證:四邊形是平行四邊形;(Ⅲ)若,試判斷二面角的大小能否為?說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據等差數列的性質可得,即,所以,故選C.2.D【解析】
本道題結合雙曲線的性質以及余弦定理,建立關于a與c的等式,計算離心率,即可.【詳解】結合題意,繪圖,結合雙曲線性質可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.本道題考查了余弦定理以及雙曲線的性質,難度偏難.3.B【解析】
圖像分析采用排除法,利用奇偶性判斷函數為奇函數,再利用特值確定函數的正負情況?!驹斀狻浚势婧瘮?,四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B。圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。4.A【解析】
由復數的運算法則計算.【詳解】因為,所以故選:A.本題考查復數的運算.屬于簡單題.5.B【解析】
利用指數函數和對數函數的單調性,將數據和做對比,即可判斷.【詳解】由于,,故.故選:B.本題考查利用指數函數和對數函數的單調性比較大小,屬基礎題.6.C【解析】
由題可推斷出和都是直角三角形,設球心為,要使三棱錐的體積最大,則需滿足,結合幾何關系和圖形即可求解【詳解】先畫出圖形,由球心到各點距離相等可得,,故是直角三角形,設,則有,又,所以,當且僅當時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎題7.B【解析】
延長到,使,連接,則四邊形為平行四邊形,根據余弦定理可求出,進而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.本題考查余弦定理的應用,考查三角形面積公式的應用,其中根據中線作出平行四邊形是關鍵,是中檔題.8.A【解析】分析:計算,由z1,是實數得,從而得解.詳解:復數z1=3+4i,z2=a+i,.所以z1,是實數,所以,即.故選A.點睛:本題主要考查了復數共軛的概念,屬于基礎題.9.A【解析】
根據三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設球半徑為,則,所以外接球的表面積,故選:A.本題考查求幾何體的外接球的表面積,關鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.10.A【解析】
求函數定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.本題考查集合的運算,解題關鍵是確定集合中的元素.確定集合的元素時要注意代表元形式,集合是函數的定義域,還是函數的值域,是不等式的解集還是曲線上的點集,都由代表元決定.11.A【解析】
根據向量垂直的坐標表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A本小題主要考查向量垂直的坐標表示,屬于基礎題.12.A【解析】
依題意問題是,然后按直到型驗證即可.【詳解】根據題意為了計算7個數的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設,則,,由知,,,作,垂足為C,則C為的中點,在和中分別求出,進而求出的關系式,即可求出橢圓的離心率.【詳解】如圖,設,則,,由橢圓定義知,,因為,所以,,作,垂足為C,則C為的中點,在中,因為,所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:本題考查橢圓的離心率和直線與橢圓的位置關系;利用橢圓的定義,結合焦點三角形和余弦定理是求解本題的關鍵;屬于中檔題、??碱}型.14.1【解析】試題分析:因為是等差數列,所以,即,又,所以,所以.故答案為1.【考點】等差數列的基本性質【名師點睛】在等差數列五個基本量,,,,中,已知其中三個量,可以根據已知條件,結合等差數列的通項公式、前項和公式列出關于基本量的方程(組)來求余下的兩個量,計算時須注意整體代換思想及方程思想的應用.15.真命題【解析】
由冪函數的單調性進行判斷即可.【詳解】已知命題:,,因為在上單調遞增,則,所以是真命題,故答案為:真命題本題主要考查了判斷全稱命題的真假,屬于基礎題.16.【解析】
第一空:將圓與聯立,利用計算即可;第二空:找到兩外切的圓的圓心與半徑的關系,再將與聯立,得到,與結合可得為等差數列,進而可得.【詳解】當r1=1時,圓,與聯立消去得,則,解得;由圖可知當時,①,將與聯立消去得,則,整理得,代入①得,整理得,則.故答案為:;.本題是拋物線與圓的關系背景下的數列題,關鍵是找到圓心和半徑的關系,建立遞推式,由遞推式求通項公式,綜合性較強,是一道難度較大的題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)1;(2)證明見解析.【解析】
(1)將不等式化為,求解得出,根據解集確定正數的值;(2)利用基本不等式以及不等式的性質,得出,,,三式相加,即可得證.【詳解】(1)解:不等式,即不等式∴,而,于是依題意得(2)證明:由(1)知,原不等式可化為∵,∴,同理,三式相加得,當且僅當時取等號綜上.本題主要考查了求絕對值不等式中參數的范圍以及基本不等式的應用,屬于中檔題.18.(1);(2)【解析】
(1)對函數求導,運用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構造函數,對函數求導,討論和0的大小關系,結合單調性求出最大值即可求得的范圍.【詳解】(1)由題得,因為在點與相切所以,∴(2)由得,令,只需,設(),當時,,在時為增函數,所以,舍;當時,開口向上,對稱軸為,,所以在時為增函數,所以,舍;當時,二次函數開口向下,且,所以在時有一個零點,在時,在時,①當即時,在小于零,所以在時為減函數,所以,符合題意;②當即時,在大于零,所以在時為增函數,所以,舍.綜上所述:實數的取值范圍為本題考查函數的導數,利用導數求函數的單調區間及函數的最小值,屬于中檔題.處理函數單調性問題時,注意利用導函數的正負,特別是已知單調性問題,轉化為函數導數恒不小于零,或恒小于零,再分離參數求解,求函數最值時分析好單調性再求極值,從而求出函數最值.19.(1)(2)詳見解析【解析】
由題意,根據平均數公式求得,再根據,參照數據求解.由題意得,獲贈話費的可能取值為,求得相應的概率,列出分布列求期望.【詳解】由題意得綜上,由題意得,獲贈話費的可能取值為,,的分布列為:本題主要考查正態分布和離散型隨機變量的分布列及期望,還考查了運算求解的能力,屬于中檔題.20.(1);(2).【解析】
(1)求出函數的定義域,即可求出結論;(2)化簡集合,根據確定集合的端點位置,建立的不等量關系,即可求解.【詳解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以實數的取值范圍為.本題考查集合的運算,集合間的關系求參數,考查函數的定義域,屬于基礎題.21.(1)(2)證明見解析【解析】
(1)采用零點分段法:、、,由此求解出不等式的解集;(2)先根據絕對值不等式的幾何意義求解出的值,然后利用基本不等式及其變形完成證明.【詳解】(1)當時,不等式為,解得當時,不等式為,解得當時,不等式為,解得∴原不等式的解集為(2)當且僅當即時取等號,∴,∴∵,∴,∴(當且僅當時取“”)同理可得,∴∴(當且僅當時取“”)本題考查絕對值不等式的解法以及利用基本不等式證明不等式,難度一般.(1)常見的絕對值不等式解法:零點分段法、圖象法、幾何意義法;(2)利用基本不等式完成證明時,注意說明取等號的條件.22.(1)證明見解析;(2)證明見解析;(3)不能為.【解析】
(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(3)作交于點,延長交于點,連接,根據三垂線定理,確定二面角的平面角,若,,由大角對大邊知,兩者矛盾,故二面角的大小不能為.【詳解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 證券從業資格證職場需求試題及答案
- 理財師備考期間考生的個人特質與學習方式相結合研究試題及答案
- 2024年項目管理專業知識培訓試題及答案
- 注冊會計師考試心理應對試題及答案
- 證券從業資格證名師講解試題及答案
- 項目計劃調整的最佳實踐考題及答案
- 板材防霉處理方案范本
- 項目執行過程中的復盤與反思機制試題及答案
- 管道工程安全風險防范與控制考核試卷
- 糧油企業生產流程優化與成本控制考核試卷
- DBJ51T 108-2018 四川省建筑巖土工程測量標準
- 2025年國家保密基本知識考試題庫及答案
- 2024年四川省成都市武侯區中考化學二模試卷附解析
- 《大學生創新創業基礎》全套教學課件
- (整理)變頻器電力電纜標準
- 《西方音樂史》課件柴可夫斯基
- 人力資源部崗位廉潔風險點及防范措施
- PRS-778S500-100-090721技術使用說明書
- 求一個數比另一個數多幾少幾應用題
- 職業衛生健康題庫
- 廣東省建設工程造價咨詢服務收費項目和收費標準表[粵價函(2011)742號]
評論
0/150
提交評論