




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
CHAPTER19
PatternRecognition:ObjectMeasurementIntroductionThisChapterismainlyabouttheobjectmeasurementandidentifyingobjectbymeasurevalue.
1Sizemeasurements2Shapeanalysis3Textureanalysis4Curveandsurfacefitting5Summary1SizeMeasurements
1.1AreaandPerimeterPixelCountArea:Thesimplestareameasurementisjustacountofthenumberofpixelsinside(andincluding)theboundary.PerimeterofaPolygon:Theperimeterofanobjectis:AreaofthePolygon:Theareaofthepolygondefinedbypixelcentersisthatallpixelnumberssubtractonemorethanhalfnumberofboundarypixels;thatis:1.1AreaandPerimeter1.ComputingareaandperimeterThereisasimplewaytocomputetheareaofapolygonbysummingtheareasofalltrianglesintheboundaryofthepolygon.Figure19-1Computetheareaofapolygon
1.1AreaandPerimeterTheareaofatriangleis:
Theareaofapolygonis:0(x1,,y1)(x2,,y2)(x2,,y1)x2x1y2y1Figure19-2Computingtheareaofatriangle
1.1AreaandPerimeter2.BoundarySmoothingSimplyskipboundarypixelscanobscurethetrueshapeoftheobjectandreducetheaccuracyofthemeasurement.
Onecycleofparametricboundaryfunctioncanbelowpass-filteredinthefrequencydomainby1)aFouriertransform2)multiplicationbyaphaselesslowpasstransferfunction3)aninverseFouriertransformFigure19-3ParametricboundaryrepresentationStartingPointStartingPoint1.2AverageandIntegratedDensityTheIODisthesumofthegraylevelofallpixelsintheobject.Itreflectsthe‘mass”or“weight’oftheobjectandisnumericallyequaltotheareamultipliedbythemeangrayleveloftheobjectinterior.1.3LengthandWidthForobjectsofrandomorientation,itisnecessarytolocatethemajoraxisoftheobjectandmeasurerelativelengthandwidth.Thereareseveralwaystoestablishtheprincipalaxisofanobjectoncetheobjectboundaryisknown:
1)Computeabestfitstraight(orcurved)linethroughthepointsintheobject;2)Becomputedfrommoments;3)UsestheMinimumEnclosingRectangle(MER)aroundtheobject.2ShapeAnalysis
2.1RectangularityAmeasurementthatreflectstherectangularityofanobjectistherectanglefitfactor:R=A0/AR.RrepresentshowwellanobjectfillsitsMER.Therectanglefitfactorisboundedbetween0and1.Anotherrelatedshapefeatureistheaspectratio:A=W/LwhichistheratioofwidthtolengthoftheMER.
Thisfeaturecandistinguishslenderobjectsfromroughlysquareorcircularobjects.
2.2CircularityCircularitymeasure:Thisfeaturetakesonaminimumvalueof4πforacircularshape.Morecomplexshapesyieldhighervalues.ThecircularityCisroughlycorrelatedwithcomplexityoftheboundary.2.2CircularityArelatedcircularitymeasurementistheboundaryenergy.Supposeanobjecthasperimeter
P
andwemeasuredistancearoundtheboundaryfromsomestartingpointwiththevariablep.Atanypoint,theboundaryhasaninstantaneousradiusofcurvaturer(p).ThecurvaturefunctionatpointpisThefunctionK(p)isperiodicwithperiodP.WecancomputetheaverageenergyperunitlengthofboundaryasForfixedarea,thecirclehasminimumboundaryenergy:Fig.19-4Radiusofcurvature2.2CircularityAthirdcircularitymeasuremakesuseoftheaveragedistancefromaninteriorpointtotheboundaryobject:wherexi
isthedistancefromtheithpixeltothenearestboundarypointinanobjectofNpoints.TheshapemeasureisFigure19-5Thedistancetransform2.3InvariantMoments
BackgroundInformationTheinvariantmomentswasadvancedbyHuin1962,whoprovedtheinvariabilitybyalgebramethod.Correlationliterature:[1]
GONZALEZRC,WINTZP.Digitalimageprocessing[M]London:Addison-WesleyPublishingCompany,1977.354—360.
Itdefinedtheinvariantmomentsbasedonthecentregeometrymoments,andapplytheinvariantmomentstodigitalimageprocessing.[2]
ABU-MOSTAFAYS,PSALTISD.Recognitiveas2pectsofmomentinvariants[J].IEEETransactionsonPatternAnalysisandMachineIntelligence,1984,6(6):698—706Itdiscusstheinformationlosing,informationcondensation,etc.ininvariantmoments.BackgroundInformation[3]RESISTH.Therevisedfundamentaltheoremofmomentinvariants[J].IEEETransactionsonPatternAnaMachineIntelligence,1991,13(8):830—834.ItmodifiedtheHu’stheory,eliminatethemistakes.[4]JIANGXY,BUNKEH。Simpleandfastcomputationmoments[J].PatternRecognition,1991,24(8):801-806.Itadvancedafastcalculationmethodofinvariantmoments.[5]BELKASIMSO,SHRIDHARM,AHMADIM.Pat2ternrecognitionwithmomentinvariants:acomparativestudyandnewresults[J].PatternRecognition,1991,24(12):1117—1138.Itsyntheticallyresearchedthevariousapplicationsofinvariantmoments,andprovedthatinvariantmomentscannotgiveidealresultinmanyinstance.TheoryofMomentsDefinition:
Thesetofmomentsofaboundedfunctionf(x,y)oftwovariablesisdefinedby:
f(x,y):densityoftheimagewithsubsectioncontinuumonlimitedplanes.PropertyofMoments
1.Asjandktakeonallnonnegativeintegervalues,theygenerateaninfinitesetofmoments.2.Theset{Mjk}isuniqueforthefunctionf(x,y),andonlyf(x,y)hasthatparticularsetofmoments.3.Theparameterj+kiscalledastheorderofthemoment.Thereisonlyonezero-ordermoment:anditisclearlytheareaoftheobject.Wecanmakeallfirst-andhigher-ordermomentsinvariantwithrespecttothesizeoftheobjectbydividingthemwithM00.TheoryofMomentsCentralMomentsThecoordinatesofthecenterofgravityofanobjectare:Theso-calledcentralmomentsarecomputedbythecenterofgravityastheorigin:Thecentralmomentsarepositioninvariant.
TheoryofMomentsPrincipalAxesTheangleofrotationθthatcausesthesecond-ordercentralmomentμ11tovanishmaybeobtainedfrom:
Thecoordinateaxesx’,y’atanangleθfromthex,yaxesarecalledtheprincipalaxesoftheobject.Iftheobjectisrotatedthroughtheangleθbeforemomentsarecomputed,orifthemomentsarecomputedrelativetothex’,y’axes,thenthemomentsarerotationinvariant.
Normalized
MomentsThenormalizedcentralmomentoff(x,y)is:
,j+k=2,3,...TheoryofMomentsTheoryofInvariantMomentsCentralmomentswhichrelativetoprincipalaxiscalculationandstandardizedbyarea,isinvariantwhentheobjectismagnified,paralleled,rotated.Simplexcentralmomentcantokenthegeometryshapeoftheplainobject,buttheyarenotinvariant.Invariantcanbeconstructedfromthesemoments.ThismethodisfirstadvancedbyHu.Heutilizedcentralmomentsconstructed7invariants.SevenInvariantMomentsFirst-ordermomentisrelatedtoshape;second-ordermomentdemonstratestheextenddegreeofcurveenclosebeelineaverage;Third-ordermomentisaboutsymmetrysurveyofaveragevalue.Fromsecond-ordermomentandthird-ordermomentcaneduceasetof7invariantmoments,whicharenotinfluentbytheparallel,rotateandproportionvaried.Fromnormalizedsecond-ordercentralmomentandthird-ordermomentcaneduce7invariantmoments:SevenInvariantMomentsCalculationofInvariantMoments
Asetofdifferentchangesfromasameimage,tovalidatethe7invariantsofmoments.(a)istheoriginalimage,(b)is(a)thatrotatedfor45°,(c)is(a)thatreducedby1/2,(d)isthemirrorsymmetryimage.a
bcdApplicationofInvariantMomentsinObjectRecognitionInvariantmomentsisthestatisticcharacterofimages,whichsatisfiedparalleled,flexed,rotatedinvariable,iswideapplicationinimageidentifydomain.Asdescribeshape,assumedf(x,y)inobjectis1andoutsideis0,thenitisonebyonecorrespondingtotheshapeoftheobject,anditsmomentreflecttheshapeinformationoftheobject.ApplicationofInvariantMomentsinObjectRecognitionTodistinguishsimilarbodiesneedaprodigiouscharactercollect.Theyieldhighdimensionclassimplementissensitivitytothenoiseandinnervariety.Insomesituation,severallow-ordermomentscanreflectaobject’snotableshapecharacter.Ifthereliableinvariantmomentswhichcandistinguishshapecharacterexist,theyusuallycanbediscoveredbyexperiments.AnArithmeticofObjectRecognitionInvariantMomentsInimageprocessing,thereareapproximatelytworecognitionmethodsoftheobjectimage:ImagematchingandImagecharactermatching.Imagematchingfortherotationandzoomobjectimagehaslowrecognitionability.Inobjectrecognitionsystem,whenmethodischoseforpick-upshapecharacteroftheimage,itisneedtodeterminantinwhichconditionthetwoimagesissimilar,incommonuseisdistancesimilarlevelmeasurementmethod.TheincommonusemeasurementisEucliddistance.AnArithmeticofObjectRecognitionInvariantMomentsDefinition:TheEucliddistancebetweenmodepatternvectorXandYis:
nischaracterspatialdimension.Aboveintroducedusingcentralmomentsoftheimagetogained7invariantmoments.This7invariantmomentsisparallel,rotated,andmeasureinvariant.Proceedingobjectrecognition,wecanuseimage’s7invariantmomentsrespectivebasedonregionandboundarycomposingthecharacteristicmoments.TheEucliddistanceofthetwoimagesastheirsimilarlevel.AnArithmeticofObjectRecognitionInvariantMomentsUseInvariantMomentsofobjectrecognitionarithmeticcanbecarriedoutthefollowing:1、Initialtargetimageandtestimageprocessingandthevalueofsomepreprocessing,thetargetseparatefromthebackground,gray-scaleimagetoachievetheamendment,noiseremoval,sharpeningtheedge.Thisarithmeticiscalculatedbytheimagehistogramvaluefromtheappropriatedomainrealizedsegmentation.AnArithmeticofObjectRecognitionInvariantMoments2.Edgedetectionortrackingprofiletargetsfromtheboundarymap.3.Momentofthetwocentresandthennormalized,inthenormalizationofHuonthebasisoftheuseofthesamemoment,sevenoutofthesamemomentofcommongoalsintheimageandobjectivesofthetestimageseigenvector;4.VectorcomputingtwoEuclideandistancebetweentheD,apre-setthresholdLtodeterminethesimilarityofthetwo,ifD<L,Imagetestsofthegoalsistofindthetarget,otherwisenot.ApplicationofInvariantMomentsTheinvariantmomentsanditscombinationshasbeenappliedsuccessfullyinmanyareas.Suchas:PrintedCharacterRecognitionChromosomalanalysisShipsRecognitionMedicalImageAnalysis2.4ShapeDescriptors1.TheDifferentialChainCodeThedifferentialchaincodereflectsthecurvatureoftheboundary.Convexitiesandconcavitiesshowupaspeaks.Theboundarychaincodeshowstheboundarytangentangleasafunctionofdistancearoundtheobject.
Figure19-6Thechaincodeanditsderivative2.4ShapeDescriptors2.FourierDescriptorsThreedifferentperiodicfunctionsthatcompletelydescribeanobject’sshape:theboundarychaincode,thepolarboundaryfunction,andthecomplexboundaryfunction.Againbecauseitisperiodic,eachoftheseboundaryfunctionshasadiscretespectrum.Requireonlylow-frequencyspectrumpulseamplitudeandphasecanbethebasicshapeofanobject.Therefore,thevalueoftheseoptionsfortheshapedescriptors.2.4ShapeDescriptors3.TheMedialAxisTransformAnotherdatareductiontechniquethatretainsshapeinformationisthemedialaxistransformationdiscussedinthepreviouschapter.
(a)(b)Figure19-7Themedialaxistransform:(a)digitalimage;(b)medialaxistransform;(c)Theeffectoforientation(c)3Textureanalysis
3.1Definitions
Thewordtextureoriginallyreferredtotheappearanceofwovenfabric,butageneraldefinitionis“thearrangementorcharacteristicsoftheconstituentelementsofanything,especiallyasregardssurfaceappearanceortactilequalities”.Atexturefeatureisavalue,computedfromtheimageofanobject,thatquantifiessomecharacteristicofthegray-levelvariationwithintheobject.Normally,atexturefeatureisindependentoftheobject’sposition,orientation,size,shape,andaveragegraylevel.。
3.2TextureSegmentationSometimesobjectsdifferfromthesurroundingbackground,andeachother,intexturebutnotinaveragebrightness.Inthatcase,imagesegmentationmustbebasedontexture.3.3StatisticalTextureFeaturesSimplestatisticalmeasuresofgray-levelvariationincludestandarddeviation,variance,skewness,andkurtosis.Thesecanbecomputedasmomentsofthegray-levelhistogramoftheobject,ascanthemodulefeaturewhereMisthenumberofpixelsintheobjectandNthenumberofgraylevelsinthegrayscale.3.3StatisticalTextureFeatures1.TheCo-OccurrenceMatrixSupposethatweestablishadirectionanddistanceinanimage.Thenthei,jthelementoftheco-occurrencematrixPforanobjectisthenumberoftimes,dividedbyM,thatfraylevelsIandjoccurintwopixelsseparatedbythatdistanceanddirectionintheobject,whereMisthenumberofpixelpairscontributingtoP.entropyinertiaenergy3.4OtherTextureFeatures1.SpectralFeaturesForagivenimage,thetwo-dimensionalFouriertransform,ofcourse,containscompleteinformationontheimage’stexture.。2.StructuralFeaturesThestructuralapproachtotextureanalysisassumesthatthetexturepatterniscomposedofaspatialarrangementoftextureprimitives.Forexample,somesmallobjects,constituteapatternofrepeatunits.Featureextractiontoidentifytheseelementsintoandquantitativeanalysisoftheirspatialarrangement.4CurveandSurfaceFitting
4.1MinimummeansquareerrorfittingGivenasetofpoints(xi,yi),acommonlyusedfittingtechniqueistofindthefunctionf(x)thatminimizesthemeansquareerror:where(xi,yi)arethedatapoints.Iff(x)istobeaparabola,itsequationis:andthecurve-fittingprocedureisusedtodeterminethebestvaluesofthecoefficientsc0,c1andc2.Inotherwords,thesefactorsthatdeterminethevalue,sothattheparabolatoagivenpointintheerrorofthemeansquareerrorsenseofthesmallest.4.2MatrixFormulationWebeginbyformingmatricesBcontainingthegivenx-values,Ycontainingthegiveny-values,andCcontainingthecoefficientsthataretobedetermined:thecolumnvectoroferrorvaluescanbewrittenasE=Y-BCwherethematrixproductBCisthecolumnvectorofy-valuescomputedfromupeq.Meansquareerroris:4.2MatrixFormulationSubstitutingE=Y-BCintoupeq.,differentiatingwithrespecttotheelementsofC,C=[BTB]-1[BTY]Whichisthevectorofcoefficientsthatminimizethemeansquareerror.[BTB]-1BTiscalledthepseudoinverseofB.Ifthenumberofpointsisequaltothenumberofcoefficients,Bisasquarematrixandcanbeinverteddirectly.C=B-1YThus,theproblemistoincludetheunknownnumberoflinearequationstosolve.4.3One-DimensionalParabolaFitAsanumericalexample,letusfitaparabolathroughasetoffivepoints.Thechartbelowshowsthegroupbythispointandthemeanstodeterminethebestfitparabola.0xf(x)Figure19-8Fitt
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 難忘的照片中考語文作文
- 紙制品生產質量管理與認證流程考核試卷
- 玻璃制品的環境適應性考核試卷
- 氮肥產業的技術發展趨勢與投資分析考核試卷
- 慶祝中秋節初二語文作文
- 競技自行車租賃服務標準考核試卷
- 廈門市高三第一次語文市質監作文
- 畜牧飼料生產安全風險評估與管理考核試卷
- 股骨頸骨折患者護理 2
- 7-6算法狀態機圖2
- 人工智能的風險與挑戰
- 基層紀檢委員培訓課件
- 信息論與編碼期末考試題(全套)
- 肺癌麻醉科教學查房
- 氣體檢測系統中英文對照外文翻譯文獻
- 死亡病例監測報告督導記錄表
- 綠化自動滴灌系統施工方案
- 車站信號自動控制教案-TYJL-ADX型計算機聯鎖系統組成及功能
- 爐壁溫度計算詳解
- 綠色建筑驗收自評報告全
- GB/T 42288-2022電化學儲能電站安全規程
評論
0/150
提交評論