




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江杭州上城區2025屆初三3月第一次綜合練習(一模)數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.圓錐的底面半徑為2,母線長為4,則它的側面積為()A.8π B.16π
C.4π D.4π2.對于二次函數,下列說法正確的是()A.當x>0,y隨x的增大而增大B.當x=2時,y有最大值-3C.圖像的頂點坐標為(-2,-7)D.圖像與x軸有兩個交點3.上周周末放學,小華的媽媽來學校門口接他回家,小華離開教室后不遠便發現把文具盒遺忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并與班主任交流了一下周末計劃才離開,為了不讓媽媽久等,小華快步跑到學校門口,則小華離學校門口的距離y與時間t之間的函數關系的大致圖象是()A. B. C. D.4.如圖,點A,B在反比例函數y=1x(x>0)的圖象上,點C,D在反比例函數y=A.4 B.3 C.2 D.35.一個空間幾何體的主視圖和左視圖都是邊長為2的正方形,俯視圖是一個圓,那么這個幾何體的表面積是()A.6πB.4πC.8πD.46.四張分別畫有平行四邊形、菱形、等邊三角形、圓的卡片,它們的背面都相同。現將它們背面朝上,從中任取一張,卡片上所畫圖形恰好是中心對稱圖形的概率是()A. B.1 C. D.7.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元8.如圖,右側立體圖形的俯視圖是()A.B.C.D.9.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉,使點D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數為()A.80° B.90° C.100° D.120°10.某市2017年實現生產總值達280億的目標,用科學記數法表示“280億”為()A.28×109 B.2.8×108 C.2.8×109 D.2.8×1010二、填空題(共7小題,每小題3分,滿分21分)11.口袋中裝有4個小球,其中紅球3個,黃球1個,從中隨機摸出兩球,都是紅球的概率為_________.12.如圖,已知在△ABC中,∠A=40°,剪去∠A后成四邊形,∠1+∠2=______°.13.點A(﹣3,y1),B(2,y2),C(3,y3)在拋物線y=2x2﹣4x+c上,則y1,y2,y3的大小關系是_____.14.如圖,在四邊形紙片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.將紙片先沿直線BD對折,再將對折后的圖形沿從一個頂點出發的直線裁剪,剪開后的圖形打開鋪平.若鋪平后的圖形中有一個是面積為2的平行四邊形,則CD=_________.15.在一次摸球實驗中,摸球箱內放有白色、黃色乒乓球共50個,這兩種乒乓球的大小、材質都相同.小明發現,摸到白色乒乓球的頻率穩定在60%左右,則箱內黃色乒乓球的個數很可能是________.16.若一次函數y=﹣x+b(b為常數)的圖象經過點(1,2),則b的值為_____.17.如圖,矩形OABC的兩邊落在坐標軸上,反比例函數y=的圖象在第一象限的分支過AB的中點D交OB于點E,連接EC,若△OEC的面積為12,則k=_____.三、解答題(共7小題,滿分69分)18.(10分)小王是“新星廠”的一名工人,請你閱讀下列信息:信息一:工人工作時間:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生產甲、乙兩種產品的件數與所用時間的關系見下表:生產甲產品數(件)生產乙產品數(件)所用時間(分鐘)10103503020850信息三:按件計酬,每生產一件甲種產品得1.50元,每生產一件乙種產品得2.80元.信息四:該廠工人每月收入由底薪和計酬工資兩部分構成,小王每月的底薪為1900元,請根據以上信息,解答下列問題:(1)小王每生產一件甲種產品,每生產一件乙種產品分別需要多少分鐘;(2)2018年1月工廠要求小王生產甲種產品的件數不少于60件,則小王該月收入最多是多少元?此時小王生產的甲、乙兩種產品分別是多少件?19.(5分)某電視臺的一檔娛樂性節目中,在游戲PK環節,為了隨機分選游戲雙方的組員,主持人設計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.20.(8分)如圖,在平面直角坐標系xOy中,直線與x軸交于點A,與雙曲線的一個交點為B(-1,4).求直線與雙曲線的表達式;過點B作BC⊥x軸于點C,若點P在雙曲線上,且△PAC的面積為4,求點P的坐標.21.(10分)班級的課外活動,學生們都很積極.梁老師在某班對同學們進行了一次關于“我喜愛的體育項目”的調査,下面是他通過收集數據后,繪制的兩幅不完整的統計圖.請根據圖中的信息,解答下列問題:(1)調查了________名學生;(2)補全條形統計圖;(3)在扇形統計圖中,“乒乓球”部分所對應的圓心角度數為________;(4)學校將舉辦運動會,該班將推選5位同學參加乒乓球比賽,有3位男同學和2位女同學,現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.22.(10分)如圖,在△ABC中,∠C=90°,E是BC上一點,ED⊥AB,垂足為D.求證:△ABC∽△EBD.23.(12分)如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉得到的,連接BE,CF相交于點D.求證:BE=CF;當四邊形ACDE為菱形時,求BD的長.24.(14分)計算:.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
解:底面半徑為2,底面周長=4π,側面積=×4π×4=8π,故選A.2、B【解析】
二次函數,所以二次函數的開口向下,當x<2,y隨x的增大而增大,選項A錯誤;當x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標為(2,-3),選項C錯誤;頂點坐標為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數的性質.3、B【解析】分析:根據題意出教室,離門口近,返回教室離門口遠,在教室內距離不變,速快跑距離變化快,可得答案.詳解:根據題意得,函數圖象是距離先變短,再變長,在教室內沒變化,最后迅速變短,B符合題意;
故選B.點睛:本題考查了函數圖象,根據距離的變化描述函數是解題關鍵.4、B【解析】
首先根據A,B兩點的橫坐標,求出A,B兩點的坐標,進而根據AC//BD//y軸,及反比例函數圖像上的點的坐標特點得出C,D兩點的坐標,從而得出AC,BD的長,根據三角形的面積公式表示出S△OAC,S△ABD的面積,再根據△OAC與△ABD的面積之和為32【詳解】把x=1代入y=1∴A(1,1),把x=2代入y=1x得:y=∴B(2,12∵AC//BD//y軸,∴C(1,K),D(2,k2∴AC=k-1,BD=k2-1∴S△OAC=12S△ABD=12(k2-又∵△OAC與△ABD的面積之和為32∴12(k-1)×1+12(k2-1故答案為B.:此題考查了反比例函數系數k的幾何意義,以及反比例函數圖象上點的坐標特征,熟練掌握反比例函數k的幾何意義是解本題的關鍵.5、A【解析】根據題意,可判斷出該幾何體為圓柱.且已知底面半徑以及高,易求表面積.解答:解:根據題目的描述,可以判斷出這個幾何體應該是個圓柱,且它的底面圓的半徑為1,高為2,那么它的表面積=2π×2+π×1×1×2=6π,故選A.6、A【解析】∵在:平行四邊形、菱形、等邊三角形和圓這4個圖形中屬于中心對稱圖形的有:平行四邊形、菱形和圓三種,∴從四張卡片中任取一張,恰好是中心對稱圖形的概率=.故選A.7、A【解析】
設這種商品每件進價為x元,根據題中的等量關系列方程求解.【詳解】設這種商品每件進價為x元,則根據題意可列方程270×0.8-x=0.2x,解得x=180.故選A.本題主要考查一元一次方程的應用,解題的關鍵是確定未知數,根據題中的等量關系列出正確的方程.8、A【解析】試題分析:從上邊看立體圖形得到俯視圖即可得右側立體圖形的俯視圖是,故選A.考點:簡單組合體的三視圖.9、B【解析】
根據旋轉的性質得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據三角形外角性質得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點A順時針旋轉得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.本題考查了旋轉的性質,全等三角形的性質和判定,三角形內角和定理,三角形外角性質的應用,掌握旋轉變換的性質是解題的關鍵.10、D【解析】
根據科學計數法的定義來表示數字,選出正確答案.【詳解】解:把一個數表示成a(1≤a<10,n為整數)與10的冪相乘的形式,這種記數法叫做科學記數法,280億用科學計數法表示為2.8×1010,所以答案選D.本題考查學生對科學計數法的概念的掌握和將數字用科學計數法表示的能力.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
先畫出樹狀圖,用隨意摸出兩個球是紅球的結果個數除以所有可能的結果個數即可.【詳解】∵從中隨意摸出兩個球的所有可能的結果個數是12,隨意摸出兩個球是紅球的結果個數是6,∴從中隨意摸出兩個球的概率=;故答案為:.此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.12、220.【解析】試題分析:△ABC中,∠A=40°,=;如圖,剪去∠A后成四邊形∠1+∠2+=;∠1+∠2=220°考點:內角和定理點評:本題考查三角形、四邊形的內角和定理,掌握內角和定理是解本題的關鍵13、y2<y3<y1【解析】
把點的坐標分別代入拋物線解析式可分別求得y1、y2、y3的值,比較可求得答案.【詳解】∵y=2x2-4x+c,∴當x=-3時,y1=2×(-3)2-4×(-3)+c=30+c,當x=2時,y2=2×22-4×2+c=c,當x=3時,y3=2×32-4×3+c=6+c,∵c<6+c<30+c,∴y2<y3<y1,故答案為y2<y3<y1.本題主要考查二次函數圖象上點的坐標特征,掌握函數圖象上點的坐標滿足函數解析式是解題的關鍵.14、或【解析】
根據裁開折疊之后平行四邊形的面積可得CD的長度為2+4或2+.【詳解】如圖①,當四邊形ABCE為平行四邊形時,作AE∥BC,延長AE交CD于點N,過點B作BT⊥EC于點T.∵AB=BC,∴四邊形ABCE是菱形.∵∠BAD=∠BCD=90°,∠ABC=150°,∴∠ADC=30°,∠BAN=∠BCE=30°,∴∠NAD=60°,∴∠AND=90°.設BT=x,則CN=x,BC=EC=2x.∵四邊形ABCE面積為2,∴EC·BT=2,即2x×x=2,解得x=1,∴AE=EC=2,EN=,∴AN=AE+EN=2+,∴CD=AD=2AN=4+2.如圖②,當四邊形BEDF是平行四邊形,∵BE=BF,∴平行四邊形BEDF是菱形.∵∠A=∠C=90°,∠ABC=150°,∴∠ADB=∠BDC=15°.∵BE=DE,∴∠EBD=∠ADB=15°,∴∠AEB=30°.設AB=y,則DE=BE=2y,AE=y.∵四邊形BEDF的面積為2,∴AB·DE=2,即2y2=2,解得y=1,∴AE=,DE=2,∴AD=AE+DE=2+.綜上所述,CD的值為4+2或2+.考核知識點:平行四邊形的性質,菱形判定和性質.15、20【解析】
先設出白球的個數,根據白球的頻率求出白球的個數,再用總的個數減去白球的個數即可.【詳解】設黃球的個數為x個,∵共有黃色、白色的乒乓球50個,黃球的頻率穩定在60%,∴=60%,解得x=30,∴布袋中白色球的個數很可能是50-30=20(個).故答案為:20.本題考查了利用頻率估計概率,熟練掌握該知識點是本題解題的關鍵.16、3【解析】
把點(1,2)代入解析式解答即可.【詳解】解:把點(1,2)代入解析式y=-x+b,可得:2=-1+b,解得:b=3,故答案為3本題考查的是一次函數的圖象點的關系,關鍵是把點(1,2)代入解析式解答.17、12.【解析】
設AD=a,則AB=OC=2a,根據點D在反比例函數y=的圖象上,可得D點的坐標為(a,),所以OA=;過點E作EN⊥OC于點N,交AB于點M,則OA=MN=,已知△OEC的面積為12,OC=2a,根據三角形的面積公式求得EN=,即可求得EM=;設ON=x,則NC=BM=2a-x,證明△BME∽△ONE,根據相似三角形的性質求得x=,即可得點E的坐標為(,),根據點E在在反比例函數y=的圖象上,可得·=k,解方程求得k值即可.【詳解】設AD=a,則AB=OC=2a,∵點D在反比例函數y=的圖象上,∴D(a,),∴OA=,過點E作EN⊥OC于點N,交AB于點M,則OA=MN=,∵△OEC的面積為12,OC=2a,∴EN=,∴EM=MN-EN=-=;設ON=x,則NC=BM=2a-x,∵AB∥OC,∴△BME∽△ONE,∴,即,解得x=,∴E(,),∵點E在在反比例函數y=的圖象上,∴·=k,解得k=,∵k>0,∴k=12.故答案為:12.本題是反比例函數與幾何的綜合題,求得點E的坐標為(,)是解決問題的關鍵.三、解答題(共7小題,滿分69分)18、(1)生產一件甲產品需要15分,生產一件乙產品需要20分;(2)小王該月最多能得3544元,此時生產甲、乙兩種產品分別60,555件.【解析】
(1)設生產一件甲種產品需x分,生產一件乙種產品需y分,利用待定系數法求出x,y的值.
(2)設生產甲種產品用x分,則生產乙種產品用(25×8×60-x)分,分別求出甲乙兩種生產多少件產品.【詳解】(1)設生產一件甲種產品需x分,生產一件乙種產品需y分.由題意得:,解這個方程組得:,答:生產一件甲產品需要15分,生產一件乙產品需要20分.(2)設生產甲種產品共用x分,則生產乙種產品用(25×8×60-x)分.則生產甲種產品件,生產乙種產品件.∴w總額=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x=-0.04x+1680,又≥60,得x≥900,由一次函數的增減性,當x=900時w取得最大值,此時w=0.04×900+1680=1644(元),則小王該月收入最多是1644+1900=3544(元),此時甲有=60(件),乙有:=555(件),答:小王該月最多能得3544元,此時生產甲、乙兩種產品分別60,555件.考查了一次函數和二元一次方程組的應用.解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系,列出方程組,再求解.19、(1);(2).【解析】
(1)直接根據概率公式求解即可;(2)根據題意先畫出樹狀圖,得出所有情況數和甲、乙兩位嘉賓能分為同隊的結果數,再根據概率公式即可得出答案.【詳解】解:(1)∵共有三根細繩,且抽出每根細繩的可能性相同,∴甲嘉賓從中任意選擇一根細繩拉出,恰好抽出細繩AA1的概率是=;(2)畫樹狀圖:共有9種等可能的結果數,其中甲、乙兩位嘉賓能分為同隊的結果數為3種情況,則甲、乙兩位嘉賓能分為同隊的概率是.20、(1)直線的表達式為,雙曲線的表達方式為;(2)點P的坐標為或【解析】分析:(1)將點B(-1,4)代入直線和雙曲線解析式求出k和m的值即可;(2)根據直線解析式求得點A坐標,由S△ACP=AC?|yP|=4求得點P的縱坐標,繼而可得答案.詳解:(1)∵直線與雙曲線()都經過點B(-1,4),,,∴直線的表達式為,雙曲線的表達方式為.(2)由題意,得點C的坐標為C(-1,0),直線與x軸交于點A(3,0),,∵,,點P在雙曲線上,∴點P的坐標為或.點睛:本題主要考查反比例函數和一次函數的交點問題,熟練掌握待定系數法求函數解析式及三角形的面積是解題的關鍵.21、50見解析(3)115.2°(4)【解析】試題分析:(1)用最喜歡籃球的人數除以它所占的百分比可得總共的學生數;(2)用學生的總人數乘以各部分所占的百分比,可得最喜歡足球的人數和其他的人數,即可把條形統計圖補充完整;(3)根據圓心角的度數=360o×它所占的百分比計算;(4)列出樹狀圖可知,共有20種等可能的結果,兩名同學恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總人數=15÷30%=50(名)故答案為50;(2)足球項目所占的人數=50×18%=9(名),所以其它項目所占人數=50﹣15﹣9﹣16=10(名)補全條形統計圖如圖所示:(3)“乒乓球”部分所對應的圓心角度數=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結果,兩名同學恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點睛:本題考查的是條形統計圖和扇形統計圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水質凈化效果評價模型-全面剖析
- 智能化玻璃生產趨勢-全面剖析
- 高分辨率圖像放大技術-全面剖析
- 課題申報書:新時代城市社區治理效能提升路徑研究
- 課題申報書:新疆統編教材使用中的鑄牢中華民族共同體意識建構研究
- 脫水機企業數字化轉型與智慧升級戰略研究報告
- 娛樂用帆船企業ESG實踐與創新戰略研究報告
- 商用餐飲設備企業ESG實踐與創新戰略研究報告
- 糖果滾壓機企業數字化轉型與智慧升級戰略研究報告
- 建筑用金屬配件制造企業縣域市場拓展與下沉戰略研究報告
- 樓梯 欄桿 欄板(一)22J403-1
- 幕墻工程重要環境因素及采取的措施方案
- 我的家鄉煙臺課件
- 二級板式換熱器熱網疏水回收的優勢
- 2021屆高考英語887核心詞(打印、詞頻、出處、例句、背誦)
- 國外幾家氣壓盤式制動器的比較
- GB/T 20647.9-2006社區服務指南第9部分:物業服務
- 培養初中學生的數學閱讀理解能力
- 卒中相關肺炎的指南解讀
- 六下統編版復習2形近字
- 硒知識科普手冊
評論
0/150
提交評論