




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Multi-agentAI–21stcenturyautomationrevolution
Automationhasbeenthefundamentaltechnology
underpinningeconomictransformationforcenturies.
WhetheritwasBritain’slate18thand19thcenturyindustrialrevolution,theUnitedStates’post-WorldWarIIboom,orSouthKorea’sindustrializationstartinginthe1960s,allbenefitedfromautomationtoincreaseproductivity,efficiency,andprofitability.Theeffectwasradicaltransformationofeconomyandsociety.1Now,inthe21stcentury,anewwaveofautomationisunderwayasagenticAIusewidensacrosseconomies.
AIagentsemployarangeofadvancedtechnologiestointeractwithusersandperformtasksautonomouslyandeffectively.Largelanguagemodels(LLMs)areoftentheprimaryinterfacebetweenAIagentsandusers.Theyareatypeoffoundationmodeltrainedonvastdatasets,primarilytext.LLMsencodeknowledgebyrecognizingpatterns,enablingAIagentstoreason,informtheirdecision-making,andcommunicate.
Anagentcanunderstandandgeneratehuman-liketextorverbalresponsesusingnaturallanguageprocessing(NLP),makinghuman-AIinteractionsmorenaturalandefficient.
AnaΓtificialintelligenceagentisasoftwareprogramthatcaninteractwithitsenvironment,collectdata,andusethistoautonomouslyperformtaskstomeetpredeterminedgoals.Asanevolutionfromtechnologieslikeroboticprocessautomation(RPA)andmachinelearning(ML),AIagentscan,perceive,reason,and
actinchangingenvironmentstoachievetheirgoals.Howtheyreachthemislargely
lefttothemtodecide.
1D.AcemogluandP.Restrepo,JournalofEconomicPerspectives,Vol.33,
AutomationandNewTasks:HowTechnology
DisplacesandReinstatesLabor,
pp.3–30
|
2
Multi-agentAI–21stcenturyautomationrevolution
AgenticAIdoingwhatitdoesbest
SincegenerativeAItookoffasapopularphenomenon,companieshaverushedtocreatetheirownversions.Theyareusedforadvancedsearch,analysisandinteractionwithdocuments,particularlyinthelegal,HR,andtechnologyfields.Whiletheseimproveonprevioussystems,tostopatthispointunderestimatesthefullpotential.LLMsareimprovingiteratively–wheretwoyearsagoanLLMwithretrieval-augmentedgeneration(RAG)couldproducesynopses–currentLLMsusingenhancedretrievalmethodscangeneratemoresophisticatedoutput.
ThefundamentaldifferencebetweenusingastandaloneLLMandemployingamulti-agentsystemisthatwiththelatter,individualagentsarecreatedtospecializeinspecifictasks–oftennotlimitedtolanguage–andcancollaboratewitheachother.Theycanexecutemorecomplextasksandintegratewithexternaltoolssuchaswebsearches,APIs,anddedicateddatabases.
|
3
Multi-agentAI–21stcenturyautomationrevolution
Tangibleandintangiblevalue
WhyshouldenterprisesgotheagenticAIroute?Inshort,becauseitwillsoonbeineverybusinessfunctionwhereit’sfeasible.
82%
oforganizations
plantointegrateAIagentsby2027.2
TherearemorereasonstomovetoagenticAIthancost-savingalone.
AccordingtoaUKCustomerSatisfactionsurvey,adefiningfeatureofhigh-performingorganizationsis“anappropriatebalanceofpeopleandtechnology,combiningspeed,efficiency,andpersonalcare.”
Inotherwords,theidealretailcustomerserviceexperienceisablendofhumanempathyandtechnologicalefficiency.3BusinessescanthereforeuseagenticAItoimproveanddifferentiatetheiroffertocustomersaheadofcompetitors,e.g.,byaddingcommunicationchannelsandstylesthatappealtospecificcustomerbases.
Companiesarere-organizingtheircustomerandITsupportservicestoraisequalitystandardsbyaugmentingthemwithAIagentsinhybridmodels.Forexample,anAIagentcanautomaticallydraftresponsestocustomerqueriesbasedonhistoricalcustomerinteractiondata.
Moreambitiously,agentscantakeownershipofaclientissue.Previously,ifacustomercontactedachatbottorequestarefundforaproductandtherequestwasnon-standard,thechatbotwouldescalatetheissuetoahumancustomer-servicerepresentative.Now,anAIagentcanrequestmoreinformationfromacustomer,forexample,proofofpurchaseoraphotographofanitem,analyzetheenquiryandofferapossiblesolution.Itcandecidealonetooverridestandardprocedure,ifcircumstancesjustifymakinganexception.Itishighlylikelytoresolvethematterwithouthumaninput.
2CapgeminiResearchInstitute,
HarnessingthevalueofgenerativeAI:
2ndedition
,2024
3UKIndex(UKCSI),
January2025
|
4
Multi-agentAI–21stcenturyautomationrevolution
Designfor
maximumΓetuΓn
AnAIagenticsystemincreasesoverallproductivity,servicequality,customersatisfaction,andloyalty.Thedesignofagent-to-agentandagent-to-humanexchangesaccordingtoframeworks,rules,risks,andprotocolsiscrucialforthis.
Unlikepredecessors,AIagentsare:
?Autonomous
?Goal-oriented
?Context-aware,usingrelevantdatatomakedecisions
?Adaptive,adjustingbehaviorandresponsesasdataorinteractionschange
?Proactive,initiatingactionindependentlywithoutuserprompts
?Language-aware,interpretingandrespondinginhumanlanguage
|
5
Multi-agentAI–21stcenturyautomationrevolution
Age∩tcreation
TobuildAIagentsrequires:
1.Definingtheirroles,
2.Identifyingandlocatingthedatatheywilluse,3.Definingwhichtasksorgoalstheyexecute,
4.Settingboundarieswithguardrails.
Withmultipleagents,eachhasitsownspecializedrole,whileitcooperateswithothersinadecentralizedstructure.Theycansolvemorecomplextaskscollaboratively,suchasprocessinginsuranceclaims:oneagentverifiesdocumentation,anotherevaluatespolicycriteria,andathirdprocessespayments,completingthetaskjointly.
Typicalgoalsforagents:
Customerservice
Content
recommendation
Predictive
analytics
Fraud
detection
Real-timemonitoring
Schedulingand
taskmanagement
Inventory
management
Orchestrationinmanufacturing
|
6
Multi-agentAI–21stcenturyautomationrevolution
Theagenticsystem
Thevisualrepresentationofanagenticprocesscancloselyresembletraditionalorganizationalprocessdiagrams.Asorganizationstransitiontowardagenticsystems,theirbusinessexpertsshouldcollaboratecloselywithAIspecialiststoeffectivelydesignandstreamlinetheseprocesses.However,integratingAIagentsintoexistingsystemscanbecomplex,disruptive,anddestabilizingtooperationsifnotmanagedcarefully.
Buildinganarchitecturethataccuratelyreflectsreal-worldactivitiesfirstrequirescreatingdigitaldescriptionsanddefinitionsofbusinessoperations.ClearlydefinedtaskscanthenbemappedtoAIagentsasneeded.Thisapproachcontrastswithtraditionalmethods,whichimposeapredefinedarchitectureontoabusinessandarchetypesontoitspeople.
Inanagent-firstenterprise,modelingagenticinteractioninvolvesvisualizingcommunicationandtransactionsbetweeninternalandexternalparties.Thisincludesunderstandingtheunderlyingmotivation,similartotraditionalbusinessprocessmodeling.Organizationsshouldmapallsuchinteractionstoaccuratelyrepresenttheentirevaluenetwork,notonlythevaluechain.
DataasAIoxygen
Datarequiresoptimizationasthefoundationfortheentireagenticarchitecture,sinceitsfragmentationblocksAIagentsfromworkingeffectively.80%oforganizationsstoremorethan50%oftheirdatainhybridandmulti-cloudinfrastructures,4whichcomplicatesintegration,availability,andmanagement.ThiscanhaveanimpactonAIagentdeploymentandeffectiveness.
Tooptimizedataforagenticusemeans:
?Evaluatingitsquality
?Establishinggovernance,management,andsecurity
?Creatingapipelinetoensurereal-timeornear-real-timeavailabilityofhigh-qualitydata
?Continuousmonitoring
?Ongoingimprovementusingfeedbackloops
4Tremblay,T.,Kohezion,
Whatisdatafragmentation?
,September2,2024
|
7
Multi-agentAI–21stcenturyautomationrevolution
EvolutiontowardsagenticAI
Acrosssectorsandindustries,whicheverdomaindecidestoimplementagenticAIarchitecture,asimilarprocessappliesacrossspecializationstomaximizereturnsoninvestment.
LeapingintoagenticAIimmediatelywithoutfirstevaluatingsimplerautomationoptionsisakintocreatingasolutioninsearchofaproblem:RPAandscriptsalonecanachieveautomationfortasksthathavedefinedstableinputsandtreatment.AgenticAIshouldbeadoptedspecificallyforachievinghyper-automation–advanced,next-generationautomationfortasksthathavevariableinputsandvariabletypesoftreatment.
1.Maptheprocesses–conversiontoagenticAIrequirespreparationforautomation.Processesarebrokendowninsub-processes,macrotasks,andmicrotasks.
Whentheframeworkisappliedtoafinancialandaccountingdigitaloperationsuchasacredit-to-cashprocess,itcanbebrokendowninto:
12macrotasks
57microtasks
6sub-processes
Level1
CredittoCash
6sub-processes
Assesscredit
Resolvedisputes
Collectcash
Reconcile
Applycash
Level2
Createknowledge
Level3
12macrotasks
Level4
57microtasks
%ofautomation/augmentation
GenAI
AgenticAI
RPA/script
Humans
x
x
x
xx
xx
xxxxx
To-be
As-is
Figure1Exampleofaccountingcredit-to-cashprocess,withdifferentlevelsofautomations(RPA/script,AgenticAI,GenAI)
2.ConvertexistingarchitectureintoautomationcomponentsstartingwithRPA/scriptsfortaskswithdefinedandstableinput,thenhyperautomationwithAgenticAIfortasksthathavevariablesinputsandvariabletypesoftreatment
3.Finally,fortasksthathavenotbeenautomated,augmenthumanworkerswithAIassistantspoweredbyGenerativeAI.
|
8
Multi-agentAI–21stcenturyautomationrevolution
Governance,guardrails,andresponsibility
Asmentionedearlier,itisamulti-agentsystem’scapabilityforspecializedroles,distributeddecision-making,autonomouscoordinationandcollaborationthatdistinguishesitfromanon-agenticGenAIsystem.Itsgreatercomplexitynecessitatesspecificgovernancestrategies.
Inamulti-agentsystem,agentsaremonitoredwhile“trusted”toactindependently,withselectiveuseofhumanoversight.AIagentsrequireclearlydefinedgovernanceframeworksthatspecifywhenandinwhatformhumanauthorizationisnecessary,forexample:
?Duringinitialconfiguration
?Atcriticaldecisionpointsinaworkflow
?Beforeinteractingwithsensitivedata
?Inoperationsinvolvingotheragentsandhumans
HumaninterventionisasafeguardincaseAIagents’decision-makingisbiased,inaccurate,orbreachescompanyethics.Such“misbehavior”coulddamageclient
andemployeetrust,negativelyimpactbrandreputation,orresultinlegalviolations.
Testingforcomplianceandfailure,includingforbias,fairness,andoperationalperformance,isessential.Theaimistoestablishpointsoffailureanddefineboundariesforguardrails.Theresultsshoulddemonstrateagents’compliancewithregulationsandbethebasisforcontingencyplansincaseoffailure.
TheautonomyofAIagentsmakesitmorecomplextotraceerrorsanddeterminetheirrootcauses.Whenthereisafault,itisnotabreakageinclassicITform.Issuesarehardertoreplicate,giventhecomplexity,sophisticationanduniquenessofeachinstanceofaction.Agentactivitymustbesystematicallylogged,capturingperformedtasks,actionstaken,evaluationmetrics,andtheagent’sinternalstateforeffectivemonitoringanderrortracing.Thesearedefinedandtestedintheproof-of-conceptstageandupdatedasneededduringtheagent’swholelifecycle.
|
9
Multi-agentAI–21stcenturyautomationrevolution
Orchestrationandintegration
Processeswithpotentiallythousandsoflargelyautonomousdigitalworkerswillneedcarefulorchestration.Successdependsonmaximizingautomationwithinawell-designedarchitecture.Withoutit,thereisriskofbreakdownordisruption.
ThepredictedwideuseofagenticAIwillpushITspecialiststowardsdevelopingskillstosupportanagenticAIsystembyonboarding,managing,andtrainingAIagentsas“digitalworkers”.
ManaginganagenticAIsystemrequires:
?Configuringagentsforspecificroles,similartorecruitingandonboardinghumanemployees
?Checkingthatagentscomplywithrelevantlaws,includingtheEU’sGDPRandAIAct
?Designinghuman-agentcollaboration
?LeadingchangemanagementwithemployeetrainingonAIadoption
|
10
Multi-agentAI–21stcenturyautomationrevolution
Thesectorsandindustriesalreadyastepahead
ThearrivalofagenticAIineconomiesaroundtheworldwillpromptorganizationstoreviewtheirprocessesforsuitabilityandpotentialgainsinproductivityandcostsaving.ThefollowingsectorsandindustriesarealreadyonanagenticAIjourney,butmorewilljoinasexpertiseinadoptionspreads.
Consumer
AI-poweredinteractivehome
assistantdevicesusedtooversee
theelderlyandinfirm,locatemislaiditems,andmonitorhomesecurity
LifeSciences
?Drugdiscoverysupporttoextractactionableinsightsfromdrug
mechanisms,diseaseprogressionandclinicaloutcomes
?Refiningclinicaltrialdesignand
monitoringreal-timedataformid-trialadjustments
RetailandSupplyChain
AI-drivenagentsmonitoring
shelvesin-storeandwarehousesandautomaticallytriggerst
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫院科技成果轉化合同樣本
- 單位 燈具 供貨合同范例
- 企業銷貨合同標準文本
- 醫療牌照租賃合同標準文本
- 協議耗材維修合同標準文本
- 借儀器合同樣本
- pe管道采購合同樣本
- 單位掛機空調保養合同范例
- 協會培訓合同范例
- 全屋美化服務合同標準文本
- 2025年普通高中學業水平選擇性考試沖刺壓軸卷一英語試卷(含答案)
- 血液檢驗 3.2017-正常骨髓細胞形態學-陳學東-20170515173650 學習資料
- 陜西師大附中2025年高三5月總復習質檢(二模)生物試題含解析
- 貴州省赫章縣野馬川鎮初級中學-紅色精神張桂梅【課件】
- 2025年中國鐵路信號電源屏數據監測報告
- 2025電力人工智能非結構化樣本脫敏規范
- 警察知識小學講課
- 2025年刑法模擬檢測試卷(罪名認定與刑罰適用)
- T-SCCX A 0010-2024 T-CQXS A 0001-2024 信息技術應用創新項目建設規范
- (二調)武漢市2025屆高中畢業生二月調研考試 政治試卷(含標準答案)
- 四年級數學上冊口算題1000道
評論
0/150
提交評論