




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024-2025學年常州市重點中學初三3月調研考試數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列關于x的方程一定有實數解的是()A. B.C. D.2.被譽為“中國天眼”的世界上最大的單口徑球面射電望遠鏡FAST的反射面總面積約為250000m2,則250000用科學記數法表示為()A.25×104m2 B.0.25×106m2 C.2.5×105m2 D.2.5×106m23.已知平面內不同的兩點A(a+2,4)和B(3,2a+2)到x軸的距離相等,則a的值為(
)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣54.運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(
)A. B. C. D.5.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點B、C的對應點分別為點F、G.在點E從點C移動到點D的過程中,則點F運動的路徑長為()A.π B.π C.π D.π6.如圖,P為⊙O外一點,PA、PB分別切⊙O于點A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=6,則△PCD的周長為()A.8 B.6 C.12 D.107.計算:得()A.- B.- C.- D.8.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.9.如圖,能判定EB∥AC的條件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC10.如圖,矩形ABCD中,AB=4,BC=3,F是AB中點,以點A為圓心,AD為半徑作弧交AB于點E,以點B為圓心,BF為半徑作弧交BC于點G,則圖中陰影部分面積的差S1-S2為()A. B. C. D.611.已知關于x的方程恰有一個實根,則滿足條件的實數a的值的個數為()A.1 B.2 C.3 D.412.定義運算:a?b=2ab.若a,b是方程x2+x-m=0(m>0)的兩個根,則(a+1)?a-(b+1)?b的值為()A.0B.2C.4mD.-4m二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,點E,F分別在邊AB,AC上,將△AEF沿直線EF翻折,點A落在點P處,且點P在直線BC上.則線段CP長的取值范圍是____.14.寫出一個經過點(1,2)的函數表達式_____.15.將多項式因式分解的結果是.16.2018年春節期間,反季游成為出境游的熱門,中國游客青睞的目的地仍主要集中在溫暖的東南亞地區.據調查發現2018年春節期間出境游約有700萬人,游客目的地分布情況的扇形圖如圖所示,從中可知出境游東南亞地區的游客約有________萬人.17.如圖,在△ABC中,∠C=90°,AC=BC=2,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B,則C′B=______18.在一次射擊訓練中,某位選手五次射擊的環數分別為5,8,7,6,1.則這位選手五次射擊環數的方差為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,點E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點O.求證:AB=DC;試判斷△OEF的形狀,并說明理由.20.(6分)觀察下列多面體,并把下表補充完整.名稱三棱柱四棱柱五棱柱六棱柱圖形頂點數61012棱數912面數58觀察上表中的結果,你能發現、、之間有什么關系嗎?請寫出關系式.21.(6分)如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點D.過點A作⊙O的切線與OD的延長線交于點P,PC、AB的延長線交于點F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長.22.(8分)已知反比例函數的圖象經過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)當y1﹣y2=4時,求m的值;(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(不需要寫解答過程).23.(8分)如圖①,在正方形ABCD中,△AEF的頂點E,F分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數.如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點M,N是BD邊上的任意兩點,且∠MAN=45°,將△ABM繞點A逆時針旋轉90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數量關系,并說明理由.在圖①中,若EG=4,GF=6,求正方形ABCD的邊長.24.(10分)已知如圖,在△ABC中,∠B=45°,點D是BC邊的中點,DE⊥BC于點D,交AB于點E,連接CE.(1)求∠AEC的度數;(2)請你判斷AE、BE、AC三條線段之間的等量關系,并證明你的結論.25.(10分)如圖,C是⊙O上一點,點P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=1.(1)求證:PC是⊙O的切線.(2)求tan∠CAB的值.26.(12分)已知a+b=3,ab=2,求代數式a3b+2a2b2+ab3的值.27.(12分)在一個不透明的盒子里,裝有三個分別寫有數字6,-2,7的小球,它們的形狀、大小、質地等完全相同,先從盒子里隨機取出一個小球,記下數字后放回盒子,搖勻后再隨機取出一個小球,記下數字.請你用畫樹狀圖的方法,求下列事件的概率:兩次取出小球上的數字相同;兩次取出小球上的數字之和大于1.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根逐一判斷即可得.【詳解】A.x2-mx-1=0中△=m2+4>0,一定有兩個不相等的實數根,符合題意;
B.ax=3中當a=0時,方程無解,不符合題意;
C.由可解得不等式組無解,不符合題意;
D.有增根x=1,此方程無解,不符合題意;
故選A.本題主要考查方程的解,解題的關鍵是掌握一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根.2、C【解析】
科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數.【詳解】解:由科學記數法可知:250000m2=2.5×105m2,故選C.此題考查科學記數法表示較大的數的方法,準確確定a與n值是關鍵.3、A【解析】分析:根據點A(a+2,4)和B(3,2a+2)到x軸的距離相等,得到4=|2a+2|,即可解答.詳解:∵點A(a+2,4)和B(3,2a+2)到x軸的距離相等,∴4=|2a+2|,a+2≠3,解得:a=?3,故選A.點睛:考查點的坐標的相關知識;用到的知識點為:到x軸和y軸的距離相等的點的橫縱坐標相等或互為相反數.4、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點睛】本題考查扇形面積的計算,圓周角定理.本題中找出兩個陰影部分面積之間的聯系是解題的關鍵.5、D【解析】
點F的運動路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【詳解】如圖,點F的運動路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.本題考查了矩形的性質、特殊角的三角函數值、含30°角的直角三角形的性質、弧長公式等知識,解題的關鍵是判斷出點F運動的路徑.6、C【解析】
由切線長定理可求得PA=PB,AC=CE,BD=ED,則可求得答案.【詳解】∵PA、PB分別切⊙O于點A、B,CD切⊙O于點E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周長為12,故選:C.本題主要考查切線的性質,利用切線長定理求得PA=PB、AC=CE和BD=ED是解題的關鍵.7、B【解析】
同級運算從左向右依次計算,計算過程中注意正負符號的變化.【詳解】-故選B.本題考查的是有理數的混合運算,熟練掌握運算法則是解題的關鍵.8、B【解析】試題分析:結合三個視圖發現,應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.9、C【解析】
在復雜的圖形中具有相等關系的兩角首先要判斷它們是否是同位角或內錯角,被判斷平行的兩直線是否由“三線八角”而產生的被截直線.【詳解】A、∠C=∠ABE不能判斷出EB∥AC,故本選項錯誤;B、∠A=∠EBD不能判斷出EB∥AC,故本選項錯誤;C、∠A=∠ABE,根據內錯角相等,兩直線平行,可以得出EB∥AC,故本選項正確;D、∠C=∠ABC只能判斷出AB=AC,不能判斷出EB∥AC,故本選項錯誤.故選C.本題考查了平行線的判定,正確識別“三線八角”中的同位角、內錯角、同旁內角是正確答題的關鍵,只有同位角相等、內錯角相等、同旁內角互補,才能推出兩被截直線平行.10、A【解析】
根據圖形可以求得BF的長,然后根據圖形即可求得S1-S2的值.【詳解】∵在矩形ABCD中,AB=4,BC=3,F是AB中點,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故選A.本題考查扇形面積的計算、矩形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.11、C【解析】
先將原方程變形,轉化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應的原方程的根.【詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數根,即△=9﹣3×2(3﹣a)=1.解得a=.當a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當x=1時,代入①式得3﹣a=1,即a=3.當a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數根時,所求的a的值分別是,3,5共3個.故選C.考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進行討論.理解分式方程產生增根的原因及一元二次方程解的情況從而正確進行分類是解題的關鍵.12、A【解析】【分析】由根與系數的關系可得a+b=-1然后根據所給的新定義運算a?b=2ab對式子(a+1)?a-(b+1)?b用新定義運算展開整理后代入進行求解即可.【詳解】∵a,b是方程x2+x-m=0(m>0)的兩個根,∴a+b=-1,∵定義運算:a?b=2ab,∴(a+1)?a-(b+1)?b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故選A.【點睛】本題考查了一元二次方程根與系數的關系,新定義運算等,理解并能運用新定義運算是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
根據點E、F在邊AB、AC上,可知當點E與點B重合時,CP有最小值,當點F與點C重合時CP有最大值,根據分析畫出符合條件的圖形即可得.【詳解】如圖,當點E與點B重合時,CP的值最小,此時BP=AB=3,所以PC=BC-BP=4-3=1,如圖,當點F與點C重合時,CP的值最大,此時CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根據勾股定理可得AC=5,所以CP的最大值為5,所以線段CP長的取值范圍是1≤CP≤5,故答案為1≤CP≤5.本題考查了折疊問題,能根據點E、F分別在線段AB、AC上,點P在直線BC上確定出點E、F位于什么位置時PC有最大(小)值是解題的關鍵.14、y=x+1(答案不唯一)【解析】
本題屬于結論開放型題型,可以將函數的表達式設計為一次函數、反比例函數、二次函數的表達式.答案不唯一.【詳解】解:所求函數表達式只要圖象經過點(1,2)即可,如y=2x,y=x+1,…答案不唯一.
故答案可以是:y=x+1(答案不唯一).本題考查函數,解題的關鍵是清楚幾種函數的一般式.15、m(m+n)(m﹣n).【解析】試題分析:原式==m(m+n)(m﹣n).故答案為:m(m+n)(m﹣n).考點:提公因式法與公式法的綜合運用.16、1【解析】分析:用總人數乘以樣本中出境游東南亞地區的百分比即可得.詳解:出境游東南亞地區的游客約有700×(1﹣16%﹣15%﹣11%﹣13%)=700×45%=1(萬).故答案為1.點睛:本題主要考查扇形統計圖與樣本估計總體,解題的關鍵是掌握各項目的百分比之和為1,利用樣本估計總體思想的運用.17、3【解析】如圖,連接BB′,∵△ABC繞點A順時針方向旋轉60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB=BB'AC'=B'C'∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=2,∴AB=(2∴BD=2×32=3C′D=12∴BC′=BD?C′D=3?1.故答案為:3?1.點睛:本題考查了旋轉的性質,全等三角形的判定與性質,等邊三角形的判定與性質,等腰直角三角形的性質,作輔助線構造出全等三角形并求出BC′在等邊三角形的高上是解題的關鍵,也是本題的難點.18、2.【解析】試題分析:五次射擊的平均成績為=(5+7+8+6+1)=7,方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(1﹣7)2]=2.考點:方差.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明略(2)等腰三角形,理由略【解析】
證明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF為等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF.∴△OEF為等腰三角形.20、8,15,18,6,7;【解析】分析:結合三棱柱、四棱柱和五棱柱的特點,即可填表,根據已知的面、頂點和棱與n棱柱的關系,可知n棱柱一定有(n+1)個面,1n個頂點和3n條棱,進而得出答案,利用前面的規律得出a,b,c之間的關系.詳解:填表如下:名稱三棱柱四棱柱五棱柱六棱柱圖形頂點數a681011棱數b9111518面數c5678根據上表中的規律判斷,若一個棱柱的底面多邊形的邊數為n,則它有n個側面,共有n+1個面,共有1n個頂點,共有3n條棱;故a,b,c之間的關系:a+c-b=1.點睛:此題通過研究幾個棱柱中頂點數、棱數、面數的關系探索出n棱柱中頂點數、棱數、面數之間的關系(即歐拉公式),掌握常見棱柱的特征,可以總結一般規律:n棱柱有(n+1)個面,1n個頂點和3n條棱是解題關鍵.21、(1)證明見解析(2)1【解析】
(1)連接OC,可以證得△OAP≌△OCP,利用全等三角形的對應角相等,以及切線的性質定理可以得到:∠OCP=90°,即OC⊥PC,即可證得;(2)先證△OBC是等邊三角形得∠COB=60°,再由(1)中所證切線可得∠OCF=90°,結合半徑OC=1可得答案.【詳解】(1)連接OC.∵OD⊥AC,OD經過圓心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切線,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切線.(2)∵OB=OC,∠OBC=60°,∴△OBC是等邊三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC?tan∠COB=1.本題考查了切線的性質定理以及判定定理,以及直角三角形三角函數的應用,證明圓的切線的問題常用的思路是根據切線的判定定理轉化成證明垂直的問題.22、(1)m=1;(2)點P坐標為(﹣2m,1)或(6m,1).【解析】
(1)先根據反比例函數的圖象經過點A(﹣4,﹣3),利用待定系數法求出反比例函數的解析式為y=12x,再由反比例函數圖象上點的坐標特征得出y1=122m=6m,y2=126m=2m,然后根據y1﹣y2(2)設BD與x軸交于點E.根據三角形PBD的面積是8列出方程12?4【詳解】解:(1)設反比例函數的解析式為y=kx∵反比例函數的圖象經過點A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函數的解析式為y=12x∵反比例函數的圖象經過點B(2m,y1),C(6m,y2),∴y1=122m=6m,y2=126m∵y1﹣y2=4,∴6m﹣2∴m=1,經檢驗,m=1是原方程的解,故m的值是1;(2)設BD與x軸交于點E,∵點B(2m,6m),C(6m,2∴D(2m,2m),BD=6m﹣2m∵三角形PBD的面積是8,∴12∴12?4∴PE=4m,∵E(2m,1),點P在x軸上,∴點P坐標為(﹣2m,1)或(6m,1).本題考查了待定系數法求反比例函數的解析式,反比例函數圖象上點的坐標特征以及三角形的面積,正確求出雙曲線的解析式是解題的關鍵.23、(1)45°.(1)MN1=ND1+DH1.理由見解析;(3)11.【解析】
(1)先根據AG⊥EF得出△ABE和△AGE是直角三角形,再根據HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出結論;(1)由旋轉的性質得出∠BAM=∠DAH,再根據SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根據勾股定理即可得出結論;(3)設正方形ABCD的邊長為x,則CE=x-4,CF=x-2,再根據勾股定理即可得出x的值.【詳解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE和△AGE是直角三角形.在Rt△ABE和Rt△AGE中,,∴△ABE≌△AGE(HL),∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=∠EAG+∠FAG=∠BAD=45°.(1)MN1=ND1+DH1.由旋轉可知:∠BAM=∠DAH,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN.在△AMN與△AHN中,,∴△AMN≌△AHN(SAS),∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH1=ND1+DH1.∴MN1=ND1+DH1.(3)由(1)知,BE=EG=4,DF=FG=2.設正方形ABCD的邊長為x,則CE=x-4,CF=x-2.∵CE1+CF1=EF1,∴(x-4)1+(x-2)1=101.解這個方程,得x1=11,x1=-1(不合題意,舍去).∴正方形ABCD的邊長為11.本題考查的是幾何變換綜合題,涉及到三角形全等的判定與性質、勾股定理、正方形的性質等知識,難度適中.24、(1)90°;(1)AE1+EB1=AC1,證明見解析.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 客服工作總結:天貓客服年終總結模版
- 普通醫生年底總結(5篇)
- 醫院放射出科題庫
- 網絡管理員必會技巧試題及答案
- 海綿竇綜合征的臨床護理
- 2025年法學考試熱點分析試題及答案
- 企業戰略中的人力資源風險分析試題及答案
- 編程環境的搭建與配置技巧試題及答案
- 鼓舞信心協議書
- 餐飲退資協議書
- 《科技創新引領未來》主題班會
- 死亡喪葬墊付協議書范本
- 日產300噸大米加工生產線智能化技術改造項目可行性研究報告寫作模板-拿地申報
- 2024年國債資金管理辦法
- 黑龍江科技大學創業創新答案
- 智聯招聘行測筆試題庫
- 地坪工程合同格式模板
- 小滿 課件小滿 課件(21張)
- 中國抗日戰爭史智慧樹知到期末考試答案章節答案2024年浙江大學
- AED(自動體外除顫儀)的使用
- 《大學生創業基礎系列課程》課件-第14-2課-創業財務管理-2學時
評論
0/150
提交評論